References of "Ghosal, Anubrata"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSmall RNA profiling of low biomass samples: identification and removal of contaminants
Heintz-Buschart, Anna; Yusuf, Dilmurat; Kaysen, Anne UL et al

in BMC Biology (2018), 16(52),

Background: Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and ... [more ▼]

Background: Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. DNA contamination has been previously reported, however contamination with RNA is usually considered to be unlikely due to its inherent instability. Small RNAs (sRNAs) identified in tissues and bodily fluids such as blood plasma, have implications for physiology and pathology, and therefore the potential to act as disease biomarkers. Thus, the possibility for RNA contaminants demands a careful evaluation. Results: Here we report the presence of small RNA contaminants in widely used microRNA extraction kits and propose an approach for their depletion. We sequenced sRNAs extracted from human plasma samples and detected important levels of non-human (exogenous) sequences whose source could be traced to the microRNA extraction columns through a careful qPCR-based analysis of several laboratory reagents. Furthermore, we also detected the presence of artefactual sequences related to these contaminants in a range of published datasets, arguing for a re-evaluation of reports suggesting the presence of exogenous RNAs of microbial and dietary origins in blood plasma. To avoid artefacts in future experiments, we also devise several protocols of contaminant RNAs, define minimal amounts of starting material for artefact-free analyses, and confirm the reduction of contaminant levels for identification of bona fide sequences using ‘ultra-clean’ extraction kits. Conclusion: This is the first report of the presence of RNA molecules as contaminants in RNA extraction kits. The described protocols should be applied in the future to avoid confounding sRNA studies. [less ▲]

Detailed reference viewed: 195 (26 UL)
Peer Reviewed
See detailExtraction and Analysis of RNA Isolated from Pure Bacteria-Derived Outer Membrane Vesicles
Habier, Janine UL; May, Patrick UL; Heintz-Buschart, Anna et al

in Arluison, Véronique; Valverde, Claudio Valverde (Eds.) Bacterial Regulatory RNA (2018)

Outer membrane vesicles (OMVs) are released by commensal as well as pathogenic Gram-negative bacteria. These vesicles contain numerous bacterial components, such as proteins, peptidoglycans ... [more ▼]

Outer membrane vesicles (OMVs) are released by commensal as well as pathogenic Gram-negative bacteria. These vesicles contain numerous bacterial components, such as proteins, peptidoglycans, lipopolysaccharides, DNA, and RNA. To examine if OMV-associated RNA molecules are bacterial degradation products and/or are functionally active, it is necessary to extract RNA from pure OMVs for subsequent analysis. Therefore, we describe here an isolation method of ultrapure OMVs and the subsequent extraction of RNA and basic steps of RNA-Seq analysis. Bacterial culture, extracellular supernatant concentration, OMV purification, and the subsequent RNA extraction out of OMVs are described. Specific pitfalls within the protocol and RNA contamination sources are highlighted. [less ▲]

Detailed reference viewed: 212 (15 UL)
Full Text
See detailIsolation of nucleic acids from low biomass samples: detection and removal of sRNA contaminants
Heintz-Buschart, Anna; Yusuf, Dilmurat; Kaysen, Anne UL et al

E-print/Working paper (2017)

Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. Due ... [more ▼]

Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. Due to its inherent instability, contamination with RNA is usually considered to be unlikely. Here we report the presence of small RNA (sRNA) contaminants in widely used microRNA extraction kits and means for their depletion. Sequencing of sRNAs extracted from human plasma samples was performed and significant levels of non-human (exogenous) sequences were detected. The source of the most abundant of these sequences could be traced to the microRNA extraction columns by qPCR-based analysis of laboratory reagents. The presence of artefactual sequences originating from the confirmed contaminants were furthermore replicated in a range of published datasets. To avoid artefacts in future experiments, several protocols for the removal of the contaminants were elaborated, minimal amounts of starting material for artefact-free analyses were defined, and the reduction of contaminant levels for identification of bona fide sequences using 'ultra-clean' extraction kits was confirmed. In conclusion, this is the first report of the presence of RNA molecules as contaminants in laboratory reagents. The described protocols should be applied in the future to avoid confounding sRNA studies. [less ▲]

Detailed reference viewed: 156 (2 UL)
Full Text
Peer Reviewed
See detailSources and Functions of Extracellular Small RNAs in Human Circulation.
Fritz, Joëlle UL; Heintz, Anna UL; Ghosal, Anubrata et al

in Annual review of nutrition (2016)

Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are ... [more ▼]

Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review. Expected final online publication date for the Annual Review of Nutrition Volume 36 is July 17, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates. [less ▲]

Detailed reference viewed: 195 (20 UL)