References of "Ghelfi, Jenny 50001846"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism
Borsche, Max; Koenig, Inke; Delcambre, Sylvie UL et al

in Brain: a Journal of Neurology (2020)

There is increasing evidence for a role of inflammation in Parkinson’s disease. Recent research in murine models suggests that parkin and PINK1 deficiency leads to impaired mitophagy, which causes the ... [more ▼]

There is increasing evidence for a role of inflammation in Parkinson’s disease. Recent research in murine models suggests that parkin and PINK1 deficiency leads to impaired mitophagy, which causes the release of mitochondrial DNA (mtDNA), thereby triggering inflammation. Specifically, the CGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway mitigates activation of the innate immune system, quantifiable as increased interleukin-6 (IL6) levels. However, the role of IL6 and circulating cell-free mtDNA in unaffected and affected individuals harbouring mutations in PRKN/PINK1 and idiopathic Parkinson’s disease patients remain elusive. We investigated IL6, C-reactive protein, and circulating cell-free mtDNA in serum of 245 participants in two cohorts from tertiary movement disorder centres. We performed a hypothesis-driven rank-based statistical approach adjusting for multiple testing. We detected (i) elevated IL6 levels in patients with biallelic PRKN/PINK1 mutations compared to healthy control subjects in a German cohort, supporting the concept of a role for inflammation in PRKN/PINK1-linked Parkinson’s disease. In addition, the comparison of patients with biallelic and heterozygous mutations in PRKN/PINK1 suggests a gene dosage effect. The differences in IL6 levels were validated in a second independent Italian cohort; (ii) a correlation between IL6 levels and disease duration in carriers of PRKN/PINK1 mutations, while no such association was observed for idiopathic Parkinson’s disease patients. These results highlight the potential of IL6 as progression marker in Parkinson’s disease due to PRKN/PINK1 mutations; (iii) increased circulating cell-free mtDNA serum levels in both patients with biallelic or with heterozygous PRKN/PINK1 mutations compared to idiopathic Parkinson’s disease, which is in line with previous findings in murine models. By contrast, circulating cell-free mtDNA concentrations in unaffected heterozygous carriers of PRKN/PINK1 mutations were comparable to control levels; and (iv) that circulating cell-free mtDNA levels have good predictive potential to discriminate between idiopathic Parkinson’s disease and Parkinson’s disease linked to heterozygous PRKN/PINK1 mutations, providing functional evidence for a role of heterozygous mutations in PRKN or PINK1 as Parkinson’s disease risk factor. Taken together, our study further implicates inflammation due to impaired mitophagy and subsequent mtDNA release in the pathogenesis of PRKN/PINK1-linked Parkinson’s disease. In individuals carrying mutations in PRKN/PINK1, IL6 and circulating cell-free mtDNA levels may serve as markers of Parkinson’s disease state and progression, respectively. Finally, our study suggests that targeting the immune system with anti-inflammatory medication holds the potential to influence the disease course of Parkinson’s disease, at least in this subset of patients. [less ▲]

Detailed reference viewed: 29 (0 UL)
Full Text
Peer Reviewed
See detailHaploinsufficiency due to a novel ACO2 deletion causes mitochondrial dysfunction in fibroblasts from a patient with dominant optic nerve atrophy
Neumann, Marie Anne-Catherine UL; Grossmann, Dajana UL; Schimpf-Linzenbold, Simone et al

in Scientific Reports (2020)

ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of ... [more ▼]

ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of mitochondrial DNA (mtDNA). Mutations in the ACO2 gene were identified in patients suffering from a broad range of symptoms, including optic nerve atrophy, cortical atrophy, cerebellar atrophy, hypotonia, seizures and intellectual disabilities. In the present study, we identified a heterozygous 51 bp deletion (c.1699_1749del51) in ACO2 in a family with autosomal dominant inherited isolated optic atrophy. A complementation assay using aco1-deficient yeast revealed a growth defect for the mutant ACO2 variant substantiating a pathogenic effect of the deletion. We used patient-derived fibroblasts to characterize cellular phenotypes and found a decrease of ACO2 protein levels, while ACO2 enzyme activity was not affected compared to two age- and gender-matched control lines. Several parameters of mitochondrial function, including mitochondrial morphology, mitochondrial membrane potential or mitochondrial superoxide production, were not changed under baseline conditions. However, basal respiration, maximal respiration, and spare respiratory capacity were reduced in mutant cells. Furthermore, we observed a reduction of mtDNA copy number and reduced mtDNA transcription levels in ACO2-mutant fibroblasts. Inducing oxidative stress led to an increased susceptibility for cell death in ACO2-mutant fibroblasts compared to controls. Our study reveals that a monoallelic mutation in ACO2 is sufficient to promote mitochondrial dysfunction and increased vulnerability to oxidative stress as main drivers of cell death related to optic nerve atrophy. [less ▲]

Detailed reference viewed: 103 (1 UL)
Full Text
Peer Reviewed
See detailMitochondrial Mechanisms of LRRK2 G2019S Penetrance
Delcambre, Sylvie UL; Ghelfi, Jenny UL; Ouzren, Nassima et al

in Frontiers in Neurology (2020)

Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with Parkinson’s disease (PD). The most common substitution, G2019S, interferes with LRRK2 kinase activity, which is ... [more ▼]

Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with Parkinson’s disease (PD). The most common substitution, G2019S, interferes with LRRK2 kinase activity, which is regulated by autophosphorylation. Yet, the penetrance of this gain-of-function mutation is incomplete, and thus far, few factors have been correlated with disease status in carriers. This includes (i) LRRK2 autophosphorylation in urinary exosomes, (ii) serum levels of the antioxidant urate, and (iii) abundance of mitochondrial DNA (mtDNA) transcription-associated 7S DNA. In light of a mechanistic link between LRRK2 kinase activity and mtDNA lesion formation, we previously investigated mtDNA integrity in fibroblasts from manifesting (LRRK2+/PD+) and non-manifesting carriers (LRRK2+/PD−) of the G2019S mutation as well as from aged-matched controls. In our published study, mtDNA major arc deletions correlated with PD status, with manifesting carriers presenting the highest levels. In keeping with these findings, we now further explored mitochondrial features in fibroblasts derived from LRRK2+/PD+ (n = 10), LRRK2+/PD− (n = 21), and control (n = 10) individuals. In agreement with an accumulation of mtDNA major arc deletions, we also detected reduced NADH dehydrogenase activity in the LRRK2+/PD+ group. Moreover, in affected G2019S carriers, we observed elevated mitochondrial mass and mtDNA copy numbers as well as increased expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates antioxidant signaling. Taken together, these results implicate mtDNA dyshomeostasis—possibly as a consequence of impaired mitophagy—in the penetrance of LRRK2-associated PD. Our findings are a step forward in the pursuit of unveiling markers that will allow monitoring of disease progression of LRRK2 mutation carriers [less ▲]

Detailed reference viewed: 76 (8 UL)
Full Text
Peer Reviewed
See detailMtDNA deletions discriminate affected from unaffected LRRK2 mutation carriers
Ouzren, Nassima UL; Delcambre, Sylvie UL; Ghelfi, Jenny UL et al

in Annals of Neurology (2019), 86(2), 324-326

Detailed reference viewed: 137 (15 UL)
Full Text
Peer Reviewed
See detailMutations in RHOT1 disrupt ER-mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson's disease.
Grossmann, Dajana UL; Berenguer, Clara UL; Bellet, Marie Estelle et al

in Antioxidants & redox signaling (2019)

OBJECTIVE: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial ... [more ▼]

OBJECTIVE: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial shape transition (MiST), which is a prerequisite for the initiation of mitophagy. Moreover, altered Miro1 protein levels have emerged as a shared feature of monogenic and sporadic Parkinson's disease (PD), but, so far, no disease-associated variants in RHOT1 have been identified. RESULTS: Here, for the first time, we describe heterozygous RHOT1 mutations in two PD patients (het c.815G>A; het c.1348C>T) and identified mitochondrial phenotypes with reduced mitochondrial mass in patient-derived cellular models. Both mutations lead to decreased ER-mitochondrial contact sites and calcium dyshomeostasis. As a consequence, energy metabolism was impaired, which in turn lead to increased mitophagy. CONCLUSION: In summary, our data support the role of Miro1 in maintaining calcium homeostasis and mitochondrial quality control in PD. [less ▲]

Detailed reference viewed: 286 (35 UL)
Full Text
Peer Reviewed
See detailLoss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism
Meiser, Johannes UL; Delcambre, Sylvie UL; Wegner, André UL et al

in Neurobiology of disease (2016), 89

The oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an ... [more ▼]

The oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an important function in cellular antioxidant responses, but its role in central metabolism of neurons is still elusive. We applied stable isotope assisted metabolic profiling to investigate the effect of a functional loss of DJ-1 and show that DJ-1 deficient neuronal cells exhibit decreased glutamine influx and reduced serine biosynthesis. By providing precursors for GSH synthesis, these two metabolic pathways are important contributors to cellular antioxidant response. Down-regulation of these pathways, as a result of loss of DJ-1 leads to an impaired antioxidant response. Furthermore, DJ-1 deficient mouse microglia showed a weak but constitutive pro-inflammatory activation. The combined effects of altered central metabolism and constitutive activation of glia cells raise the susceptibility of dopaminergic neurons towards degeneration in patients harboring mutated DJ-1. Our work reveals metabolic alterations leading to increased cellular instability and identifies potential new intervention points that can further be studied in the light of novel translational medicine approaches. [less ▲]

Detailed reference viewed: 273 (32 UL)
Full Text
Peer Reviewed
See detailThe Mouse Brain Metabolome: Region-Specific Signatures and Response to Excitotoxic Neuronal Injury
Jäger, Christian UL; Glaab, Enrico UL; Michelucci, Alessandro UL et al

in American Journal of Pathology (2015), 185(6), 1699-1712

Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems' analyses, or omics approaches, have become an important tool in characterizing ... [more ▼]

Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems' analyses, or omics approaches, have become an important tool in characterizing this process. Although RNA and protein profiling made their entry into this field a couple of decades ago, metabolite profiling is a more recent addition. The metabolome represents a large part or all metabolites in a tissue, and gives a snapshot of its physiology. By using gas chromatography coupled to mass spectrometry, we analyzed the metabolic profile of brain regions of the mouse, and found that each region is characterized by its own metabolic signature. We then analyzed the metabolic profile of the mouse brain after excitotoxic injury, a mechanism of neurodegeneration implicated in numerous neurological diseases. More important, we validated our findings by measuring, histologically and molecularly, actual neurodegeneration and glial response. We found that a specific global metabolic signature, best revealed by machine learning algorithms, rather than individual metabolites, was the most robust correlate of neuronal injury and the accompanying gliosis, and this signature could serve as a global biomarker for neurodegeneration. We also observed that brain lesioning induced several metabolites with neuroprotective properties. Our results deepen the understanding of metabolic changes accompanying neurodegeneration in disease models, and could help rapidly evaluate these changes in preclinical drug studies. [less ▲]

Detailed reference viewed: 315 (96 UL)
Full Text
Peer Reviewed
See detailSimultaneous extraction of proteins and metabolites from cells in culture
Sapcariu, Sean UL; Kanashova, Tamara; Weindl, Daniel UL et al

in MethodsX (2014)

Detailed reference viewed: 176 (17 UL)
Full Text
Peer Reviewed
See detailImmune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
Michelucci, Alessandro UL; Cordes, Thekla UL; Ghelfi, Jenny UL et al

in Proceedings of the National Academy of Sciences of the United States of America (2013)

Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an ... [more ▼]

Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. [less ▲]

Detailed reference viewed: 496 (131 UL)