References of "Gemmar, Peter"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPost-operative deep brain stimulation assessment: Automatic data integration and report generation
Husch, Andreas UL; Petersen, Mikkel V.; Gemmar, Peter et al

in Brain Stimulation (2018)

Background The gold standard for post-operative deep brain stimulation (DBS) parameter tuning is a monopolar review of all stimulation contacts, a strategy being challenged by recent developments of more ... [more ▼]

Background The gold standard for post-operative deep brain stimulation (DBS) parameter tuning is a monopolar review of all stimulation contacts, a strategy being challenged by recent developments of more complex electrode leads. Objective Providing a method to guide clinicians on DBS assessment and parameter tuning by automatically integrating patient individual data. Methods We present a fully automatic method for visualization of individual deep brain structures in relation to a DBS lead by combining precise electrode recovery from post-operative imaging with individual estimates of deep brain morphology utilizing a 7T-MRI deep brain atlas. Results The method was evaluated on 20 STN DBS cases. It demonstrated robust automatic creation of 3D-enabled PDF reports visualizing electrode to brain structure relations and proved valuable in detecting miss placed electrodes. Discussion Automatic DBS assessment is feasible and can conveniently provide clinicians with relevant information on DBS contact positions in relation to important anatomical structures. [less ▲]

Detailed reference viewed: 136 (7 UL)
Full Text
Peer Reviewed
See detailPaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation
Husch, Andreas UL; Petersen, Mikkel V.; Gemmar, Peter et al

in NeuroImage: Clinical (2018), 17

Abstract Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative ... [more ▼]

Abstract Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. [less ▲]

Detailed reference viewed: 198 (30 UL)
Full Text
Peer Reviewed
See detailShape-aware surface reconstruction from sparse 3D point-clouds
Bernard, Florian UL; Salamanca Mino, Luis UL; Thunberg, Johan UL et al

in Medical Image Analysis (2017), 38

The reconstruction of an object’s shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process ... [more ▼]

The reconstruction of an object’s shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are “oriented” according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data. [less ▲]

Detailed reference viewed: 164 (21 UL)
Full Text
Peer Reviewed
See detailIntegration of sparse electrophysiological measurements with preoperative MRI using 3D surface estimation in deep brain stimulation surgery
Husch, Andreas UL; Gemmar, Peter; Thunberg, Johan UL et al

in Webster, Robert; Fei, Baowei (Eds.) Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling (2017, February 14)

Intraoperative microelectrode recordings (MER) have been used for several decades to guide neurosurgeons during the implantation of Deep Brain Stimulation (DBS) electrodes, especially when targeting the ... [more ▼]

Intraoperative microelectrode recordings (MER) have been used for several decades to guide neurosurgeons during the implantation of Deep Brain Stimulation (DBS) electrodes, especially when targeting the subthalamic nucleus (STN) to suppress the symptoms of Parkinson’s Disease. The standard approach is to use an array of up to five MER electrodes in a fixed configuration. Interpretation of the recorded signals yields a spatiallyvery sparse set of information about the morphology of the respective brain structures in the targeted area. However, no aid is currently available for surgeons to intraoperatively integrate this information with other data available on the patient’s individual morphology (e.g. MR imaging data used for surgical planning). This integration might allow surgeons to better determine the most probable position of the electrodes within the target structure during surgery. This paper suggests a method for reconstructing a surface patch from the sparse MER dataset utilizing additional a-priori knowledge about the geometrical configuration of the measurement electrodes. The conventional representation of MER measurements as intervals of target region/non-target region is therefore transformed into an equivalent boundary set representation, allowing efficient point-based calculations. Subsequently, the problem is to integrate the resulting patch with a preoperative model of the target structure, which can be formulated as registration problem minimizing a distance measure between the two surfaces. When restricting this registration procedure to translations, which is reasonable given certain geometric considerations, the problem can be solved globally by employing an exhaustive search with arbitrary precision in polynomial time. The proposed method is demonstrated using bilateral STN/Substantia Nigra segmentation data from preoperative MRIs of 17 Patients with simulated MER electrode placement. When using simulated data of heavily perturbed electrodes and subsequent MER measuremen [less ▲]

Detailed reference viewed: 126 (10 UL)
Full Text
Peer Reviewed
See detailFast Correspondences for Statistical Shape Models of Brain Structures
Bernard, Florian UL; Vlassis, Nikos UL; Gemmar, Peter et al

in SPIE Medical Imaging (2016, March)

Detailed reference viewed: 206 (17 UL)
Full Text
Peer Reviewed
See detailLinear Shape Deformation Models with Local Support using Graph-based Structured Matrix Factorisation
Bernard, Florian UL; Gemmar, Peter; Hertel, Frank UL et al

in Linear Shape Deformation Models with Local Support using Graph-based Structured Matrix Factorisation (2016)

Representing 3D shape deformations by linear models in high-dimensional space has many applications in computer vision and medical imaging, such as shape-based interpolation or segmentation. Commonly ... [more ▼]

Representing 3D shape deformations by linear models in high-dimensional space has many applications in computer vision and medical imaging, such as shape-based interpolation or segmentation. Commonly, using Principal Components Analysis a low-dimensional (affine) subspace of the high-dimensional shape space is determined. However, the resulting factors (the most dominant eigenvectors of the covariance matrix) have global support, i.e. changing the coefficient of a single factor deforms the entire shape. In this paper, a method to obtain deformation factors with local support is presented. The benefits of such models include better flexibility and interpretability as well as the possibility of interactively deforming shapes locally. For that, based on a well-grounded theoretical motivation, we formulate a matrix factorisation problem employing sparsity and graph-based regularisation terms. We demonstrate that for brain shapes our method outperforms the state of the art in local support models with respect to generalisation ability and sparse shape reconstruction, whereas for human body shapes our method gives more realistic deformations. [less ▲]

Detailed reference viewed: 131 (14 UL)
Full Text
Peer Reviewed
See detailShape-aware 3D Interpolation using Statistical Shape Models
Bernard, Florian UL; Salamanca Mino, Luis UL; Thunberg, Johan UL et al

in Symposium on Statistical Shape Models and Applications, Delemont, Switzerland, October 2015 (2015, October)

Detailed reference viewed: 148 (34 UL)
Full Text
Peer Reviewed
See detailTransitively Consistent and Unbiased Multi-Image Registration Using Numerically Stable Transformation Synchronisation
Bernard, Florian UL; Thunberg, Johan UL; Salamanca Mino, Luis UL et al

in MIDAS Journal (2015)

Abstract. Transitive consistency of pairwise transformations is a desir- able property of groupwise image registration procedures. The transfor- mation synchronisation method [4] is able to retrieve ... [more ▼]

Abstract. Transitive consistency of pairwise transformations is a desir- able property of groupwise image registration procedures. The transfor- mation synchronisation method [4] is able to retrieve transitively con- sistent pairwise transformations from pairwise transformations that are initially not transitively consistent. In the present paper, we present a numerically stable implementation of the transformation synchronisa- tion method for a ne transformations, which can deal with very large translations, such as those occurring in medical images where the coor- dinate origins may be far away from each other. By using this method in conjunction with any pairwise (a ne) image registration algorithm, a transitively consistent and unbiased groupwise image registration can be achieved. Experiments involving the average template generation from 3D brain images demonstrate that the method is more robust with re- spect to outliers and achieves higher registration accuracy compared to reference-based registration. [less ▲]

Detailed reference viewed: 144 (21 UL)
Full Text
Peer Reviewed
See detailA solution for Multi-Alignment by Transformation Synchronisation
Bernard, Florian UL; Thunberg, Johan UL; Gemmar, Peter et al

in The proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

The alignment of a set of objects by means of transformations plays an important role in computer vision. Whilst the case for only two objects can be solved globally, when multiple objects are considered ... [more ▼]

The alignment of a set of objects by means of transformations plays an important role in computer vision. Whilst the case for only two objects can be solved globally, when multiple objects are considered usually iterative methods are used. In practice the iterative methods perform well if the relative transformations between any pair of objects are free of noise. However, if only noisy relative transformations are available (e.g. due to missing data or wrong correspondences) the iterative methods may fail. Based on the observation that the underlying noise-free transformations lie in the null space of a matrix that can directly be obtained from pairwise alignments, this paper presents a novel method for the synchronisation of pairwise transformations such that they are globally consistent. Simulations demonstrate that for a high amount of noise, a large proportion of missing data and even for wrong correspondence assignments the method delivers encouraging results. [less ▲]

Detailed reference viewed: 198 (38 UL)
Full Text
Peer Reviewed
See detailAssessment of Electrode Displacement and Deformation with Respect to Pre-Operative Planning in Deep Brain Stimulation
Husch, Andreas UL; Gemmar, Peter; Lohscheller, Jörg et al

in Handels, Heinz; Deserno, Thomas Martin; Meinzer, Hans-Peter (Eds.) et al Bildverarbeitung für die Medizin 2015 (2015)

The post-operative validation of deep brain stimulation electrode displacement and deformation is an important task towards improved DBS targeting. In this paper a method is proposed to align models of ... [more ▼]

The post-operative validation of deep brain stimulation electrode displacement and deformation is an important task towards improved DBS targeting. In this paper a method is proposed to align models of deep brain stimulation electrodes that are automatically extracted from post-operative CT imaging in a common coordinate system utilizing the planning data as reference. This enables the assessment of electrode displacement and deformation over the whole length of the trajectory with respect to the pre-operative planning. Accordingly, it enables the estimation of plan deviations in the surgical process as well as cross-patient statistics on electrode deformation, e.g. the bending induced by brain-shift. [less ▲]

Detailed reference viewed: 222 (14 UL)
Full Text
Peer Reviewed
See detailSusceptibility-Weighted MRI for Deep Brain Stimulation: Potentials in Trajectory Planning
Hertel, Frank UL; Husch, Andreas UL; Dooms, Georges et al

in Stereotactic & Functional Neurosurgery (2015), 93(5), 303-308

Background: Deep brain stimulation (DBS) trajectory plan- ning is mostly based on standard 3-D T1-weighted gado- linium-enhanced MRI sequences (T1-Gd). Susceptibility- weighted MRI sequences (SWI) show ... [more ▼]

Background: Deep brain stimulation (DBS) trajectory plan- ning is mostly based on standard 3-D T1-weighted gado- linium-enhanced MRI sequences (T1-Gd). Susceptibility- weighted MRI sequences (SWI) show neurovascular struc- tures without the use of contrast agents. The aim of this study was to investigate whether SWI might be useful in DBS trajectory planning. Methods: We performed bilateral DBS planning using conventional T1-Gd images of 10 patients with different kinds of movement disorders. Afterwards, we matched SWI sequences and compared the visibility of vas- cular structures in both imaging modalities. Results: By ana- lyzing 100 possible trajectories, we found a potential vascu- lar conflict in 13 trajectories based on T1-Gd in contrast to 53 in SWI. Remarkably, all vessels visible in T1-Gd were also de- picted in SWI, whereas SWI showed many additional vascular structures which could not be identified in T1-Gd. Conclu- sion/Discussion: The sensitivity for detecting neurovascular structures for DBS planning seems to be significantly higher in SWI. As SWI does not require a contrast agent, we suggest that SWI may be a valuable alternative to T1-Gd MRI for DBS trajectory planning. Furthermore, the data analysis suggests that vascular interactions of DBS trajectories might be more frequent than expected from the very low incidence of symptomatic bleedings. The explanation for this is currently the subject of debate and merits further studies. [less ▲]

Detailed reference viewed: 128 (12 UL)
Full Text
Peer Reviewed
See detailAn Extensible Development Environment for 3D Segmentations based on Active Shape Models
Bernard, Florian UL; Gemmar, Peter; Husch, Andreas UL et al

in Shape Symposium (2014)

Detailed reference viewed: 39 (6 UL)
See detailMethod for planning a surgical procedure
Gielen, Frans L. H.; Hertel, Frank UL; Gemmar, Peter et al

Report (2012)

Detailed reference viewed: 36 (3 UL)
Full Text
Peer Reviewed
See detailImplantation of electrodes for deep brain stimulation of the subthalamic nucleus in advanced Parkinson's disease with the aid of intraoperative microrecording under general anesthesia.
Hertel, Frank UL; Zuchner, Mark; Weimar, Inge et al

in Neurosurgery (2006), 59(5), 11381138

OBJECTIVE: Deep brain stimulation (DBS) is widely accepted in the treatment of advanced Parkinson's disease (PD) and other movement disorders. The standard implantation procedure is performed under local ... [more ▼]

OBJECTIVE: Deep brain stimulation (DBS) is widely accepted in the treatment of advanced Parkinson's disease (PD) and other movement disorders. The standard implantation procedure is performed under local anesthesia (LA). Certain groups of patients may not be eligible for surgery under LA because of clinical reasons, such as massive fear, reduced cooperativity, or coughing attacks. Microrecording (MER) has been shown to be helpful in DBS surgery. The purpose of this study was to evaluate the feasibility of MER for DBS surgery under general anesthesia (GA) and to compare the data of intraoperative MER as well as the clinical data with that of the current literature of patients undergoing operation under LA. CLINICAL PRESENTATION: The data of nine patients with advanced PD (mean Hoehn and Yahr status, 4.2) who were operated with subthalamic nucleus (STN) DBS under GA, owing to certain clinical circumstances ruling out DBS under LA, were retrospectively analyzed. All operations were performed under analgosedation with propofol or remifentanil and intraoperative MER. For MER, remifentanil was ceased completely and propofol was lowered as far as possible. INTERVENTION: The STN could be identified intraoperatively in all patients with MER. The typical bursting pattern was identified, whereas a widening of the baseline noise could not be as adequately detected as in patients under LA. The daily off phases of the patients were reduced from 50 to 17%, whereas the Unified Parkinson's Disease Rating Scale III score was reduced from 43 (preoperative, medication off) to 19 (stimulation on, medication off) and 12 (stimulation on, medication on). Two patients showed a transient neuropsychological deterioration after surgery, but both also had preexisting episodes of disorientation. One implantable pulse generator infection was noticed. No further significant clinical complications were observed. CONCLUSION: STN surgery for advanced PD with MER guidance is possible with good clinical results under GA. Intraoperative MER of the STN region can be performed under GA with a special anesthesiological protocol. In this setting, the typical STN bursting pattern can be identified, whereas the typical widening of the background noise baseline while entering the STN region is obviously absent. This technique may enlarge the group of patients eligible for STN surgery. Although the clinical improvements and parameter settings in this study were within the range of the current literature, further randomized controlled studies are necessary to compare the results of STN DBS under GA and LA, respectively. [less ▲]

Detailed reference viewed: 53 (3 UL)