![]() Gautam, Sumit ![]() ![]() ![]() in IEEE Access (2021), 9 The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest ... [more ▼] The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest in the field of wireless power transfer (WPT) using the RF range of the electromagnetic (EM) spectrum. In this paper, we experimentally investigate the aspect of real-time energy harvesting (EH) via different types of waveform designs such as orthogonal frequency division multiplexing (OFDM), square, triangular, sinusoidal, and sawtooth. We make use of a Software Defined Radio (SDR) and a Powercast P21XXCSR-EVB EH module to carry out the experiments on a practical device to assess performance. Specifically, we are interested in obtaining some insights based on the comparison between the aforementioned waveform designs from the perspectives of the separation distance between the USRP and P21XXCSR-EVB EH module, and power emission via USRP. In this vein, we perform additional subsequent experiments after reporting the practical effectiveness of the OFDM waveform, which also follows our intuitive analysis. Correspondingly, we study the effect on WPT with variable USRP transmit power, the separation distance between the USRP and EH antennas, number of OFDM sub-carriers, and multipath setting. As an application of OFDM, the effectiveness of fifth generation-new radio (5G-NR) and long-term evolution (LTE) waveforms are also tested for the WPT mechanism. The demonstration of the EH is provided in terms of the above-mentioned investigation metrics while seeking the best waveform to support WPT. [less ▲] Detailed reference viewed: 108 (9 UL)![]() Gautam, Sumit ![]() ![]() ![]() in Sensors (2021), 21 In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy ... [more ▼] In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy-efficient manner while incorporating suitable network coverage expansion methodologies. To this end, this paper proposes a novel two-hop hybrid active-and-passive relaying scheme to facilitate simultaneous wireless information and power transfer (SWIPT) considering both time-switching (TS) and power-splitting (PS) receiver architectures, while dynamically modelling the involved dual-hop time-period (TP) metric. An optimization problem is formulated to jointly optimize the throughput, harvested energy, and transmit power of a SWIPT-enabled system with the proposed hybrid scheme. In this regard, we provide two distinct ways to obtain suitable solutions based on the Lagrange dual technique and Dinkelbach method assisted convex programming, respectively, where both the approaches yield an appreciable solution within polynomial computational time. The experimental results are obtained by directly solving the primal problem using a non-linear optimizer. Our numerical results in terms of weighted utility function show the superior performance of the proposed hybrid scheme over passive repeater-only and active relay-only schemes, while also depicting their individual performance benefits over the corresponding benchmark SWIPT systems with the fixed-TP. [less ▲] Detailed reference viewed: 103 (10 UL)![]() Gautam, Sumit ![]() ![]() ![]() Poster (2021, June) We consider a multi-group (MG) multicasting (MC) system wherein a multi-antenna transmitter serves heterogeneous users capable of either information decoding (ID) or energy harvesting (EH), or both. In ... [more ▼] We consider a multi-group (MG) multicasting (MC) system wherein a multi-antenna transmitter serves heterogeneous users capable of either information decoding (ID) or energy harvesting (EH), or both. In this context, we investigate a precoder design framework to explicitly serve the ID and EH users categorized within certain MC and EH groups. Specifically, the ID users are categorized within multiple MC groups while the EH users are a part of single (last) group. We formulate a problem to optimize the energy efficiency in the considered scenario under a quality-of-service (QoS) constraint. An algorithm based on Dinkelback method, slack-variable replacement, and second-order conic programming (SOCP)/semi-definite relaxation (SDR) is proposed to obtain a suitable solution for the above-mentioned fractional-objective dependent non-convex problem. Simulation results illustrate the benefits of proposed algorithm under several operating conditions and parameter values, while drawing a comparison between the two proposed methods. [less ▲] Detailed reference viewed: 92 (11 UL)![]() Gautam, Sumit ![]() ![]() ![]() Poster (2021, April) The quest for finding a small-sized energy supply to run the small-scale wireless gadgets, with almost an infinite lifetime, has intrigued humankind since past several decades. In this context, the ... [more ▼] The quest for finding a small-sized energy supply to run the small-scale wireless gadgets, with almost an infinite lifetime, has intrigued humankind since past several decades. In this context, the concept of Quantum batteries has come into limelight more recently to serve the purpose. However, the main issue revolving around the closed-system design of Quantum batteries is to ensure a loss-less environment, which is extremely difficult to realize in practice. In this paper, we present the modeling and optimization aspects of a Radio-Frequency (RF) Energy Harvesting (EH) assisted Quantum battery, wherein several EH modules (in the form of micro- or nano- sized integrated circuits (ICs)) help each of the involved Quantum sources achieve the so-called quasi-stable state. Specifically, a micro-controller manages the overall harvested energy from the RF-EH ICs and a photon emitting device, such that the emitted photons are absorbed by the electrons in the Quantum sources. In order to precisely model and optimize the considered framework, we formulate a transmit power minimization problem for an RF-based wireless system to optimize the number of RF-EH ICs under the given EH constraints at the Quantum battery-enabled wireless device. We obtain an analytical solution to the above-mentioned problem using a rational approach, while additionally seeking another solution obtained via a non-linear program solver. The effectiveness of the proposed technique is reported in the form of numerical results by taking a range of system parameters into account. [less ▲] Detailed reference viewed: 195 (14 UL)![]() Gautam, Sumit ![]() ![]() ![]() in IEEE Transactions on Green Communications and Networking (2021) We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures ... [more ▼] We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures, energy harvesting (EH) only users with non-linear EH module, and users with joint ID and EH capabilities having separate units for the two operations, respectively. Each user is categorized under unique group(s), which can be of MC type specifically meant for ID users, and/or an energy group consisting of EH explicit users. The joint ID and EH users are a part of both EH group and single MC group. We formulate an optimization problem to minimize the total transmit power with optimal precoder designs for the three aforementioned scenarios, under certain quality-of-service constraints. The problem may be adapted to the well-known semidefinite program and solved via relaxation of rank-1 constraint. However, this process leads to performance degradation in some cases, which increases with the rank of solution obtained from the relaxed problem. Hence, we develop a novel technique motivated by the feasible-point pursuit successive convex approximation method in order to address the rank-related issue. The benefits of proposed method are illustrated under various operating conditions and parameter values, with comparison between the three above-mentioned scenarios. [less ▲] Detailed reference viewed: 139 (18 UL)![]() Tran Dinh, Hieu ![]() ![]() ![]() Scientific Conference (2020, October 06) This work studies unmanned aerial vehicle (UAV) relay-assisted Internet of Things (IoT) communication networks in which a UAV is deployed as an aerial base station (BS) to collect time-constrained data ... [more ▼] This work studies unmanned aerial vehicle (UAV) relay-assisted Internet of Things (IoT) communication networks in which a UAV is deployed as an aerial base station (BS) to collect time-constrained data from IoT devices and transfer information to a ground gateway (GW). In this context, we jointly optimize the allocated bandwidth, transmission power, as well as the UAV trajectory to maximize the total system throughput while satisfying the user’s latency requirement and the UAV’s limited storage capacity. The formulated problem is strongly nonconvex which is very challenging to solve optimally. Towards an appealing solution, we first introduce new variables to convert the original problem into a computationally tractable form, and then develop an iterative algorithm for its solution by leveraging the inner approximation method. Numerical results are given to show [less ▲] Detailed reference viewed: 231 (14 UL)![]() Gautam, Sumit ![]() ![]() ![]() in IEEE Open Journal of the Communications Society (2020) The development of next generation wireless communication systems focuses on the expansion of existing technologies, while ensuring an accord between various devices within a system. In this paper, we ... [more ▼] The development of next generation wireless communication systems focuses on the expansion of existing technologies, while ensuring an accord between various devices within a system. In this paper, we target the aspect of precoder design for simultaneous wireless information and power transmission (SWIPT) in a multi-group (MG) multicasting (MC) framework capable of handling heterogeneous types of users, viz., information decoding (ID) specific, energy harvesting (EH) explicit, and/or both ID and EH operations concurrently. Precoding is a technique well-known for handling the inter-user interference in multi-user systems, however, the joint design with SWIPT is not yet fully exploited. Herein, we investigate the potential benefits of having a dedicated precoder for the set of users with EH demands, in addition to the MC precoding. We study the system performance of the aforementioned system from the perspectives of weighted sum of signal-to-interference-plus-noise-ratio (SINR) and fairness. In this regard, we formulate the precoder design problems for (i) maximizing the weighted sum of SINRs at the intended users and (ii) maximizing the minimum of SINRs at the intended users; both subject to the constraints on minimum (non-linear) harvested energy, an upper limit on the total transmit power and a minimum SINR required to close the link. We solve the above-mentioned problems using distinct iterative algorithms with the help of semi-definite relaxation (SDR) and slack-variable replacement (SVR) techniques, following suitable transformations pertaining the problem convexification. The main novelty of the proposed approach lies in the ability to jointly design the MC and EH precoders for serving the heterogeneously classified ID and EH users present in distinct groups, respectively. We illustrate the comparison between the proposed weighted sum-SINR and fairness models via simulation results, carried out under various parameter values and operating conditions. [less ▲] Detailed reference viewed: 118 (18 UL)![]() Tran Dinh, Hieu ![]() ![]() ![]() E-print/Working paper (2020) Unmanned aerial vehicle (UAV) communication has emerged as a prominent technology for emergency communications (e.g., natural disaster) in Internet of Things (IoT) networks to enhance the ability of ... [more ▼] Unmanned aerial vehicle (UAV) communication has emerged as a prominent technology for emergency communications (e.g., natural disaster) in Internet of Things (IoT) networks to enhance the ability of disaster prediction, damage assessment, and rescue operations promptly. In this paper, a UAV is deployed as a flying base station (BS) to collect data from time-constrained IoT devices and then transfer the data to a ground gateway (GW). In general, the latency constraint at IoT users and the limited storage capacity of UAV highly hinder practical applications of UAV-assisted IoT networks. In this paper, full-duplex (FD) technique is adopted at the UAV to overcome these challenges. In addition, half-duplex (HD) scheme for UAV-based relaying is also considered to provide a comparative study between two modes (viz., FD and HD). Herein, a device is successfully served iff its data is collected by UAV and conveyed to GW within the flight time. In this context, we aim at maximizing the number of served IoT devices by jointly optimizing bandwidth and power allocation, as well as the UAV trajectory, while satisfying the requested timeout (RT) requirement of each device and the UAV’s limited storage capacity. The formulated optimization problem is troublesome to solve due to its non-convexity and combinatorial nature. Toward appealing applications, we first relax binary variables into continuous values and transform the original problem into a more computationally tractable form. By leveraging inner approximation framework, we derive newly approximated functions for non-convex parts and then develop a simple yet efficient iterative algorithm for its solutions. Next, we attempt to maximize the total throughput subject to the number of served IoT devices. Finally, numerical results show that the proposed algorithms significantly outperform benchmark approaches in terms of the number of served IoT devices and the amount of collected data. [less ▲] Detailed reference viewed: 84 (7 UL)![]() Gautam, Sumit ![]() ![]() ![]() Scientific Conference (2020, June) We propose a novel technique for total transmit power minimization and optimal precoder design in wireless multi-group (MG) multicasting (MC) systems. The considered framework consists of three different ... [more ▼] We propose a novel technique for total transmit power minimization and optimal precoder design in wireless multi-group (MG) multicasting (MC) systems. The considered framework consists of three different systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures, energy harvesting (EH) only users with non-linear EH module, and users with joint ID and EH capabilities having separate units for the two operations, respectively. Each user is categorized under unique group(s), which can be of MC type specifically meant for ID users, and/or an energy group consisting of EH explicit users. The joint ID and EH users are a part of the (last) EH group as well as any one of the MC groups distinctly. In this regard, we formulate an optimization problem to minimize the total transmit power with optimal precoder designs for the three aforementioned scenarios, under constraints on minimum signal-to-interference-plus-noise ratio and harvested energy by the users with respective demands. The problem may be adapted to the well-known semi-definite program, which can be typically solved via relaxation of rank-1 constraint. However, the relaxation of this constraint may in some cases lead to performance degradation, which increases with the rank of the solution obtained from the relaxed problem. Hence, we develop a novel technique motivated by the feasible-point pursuit and successive convex approximation method in order to address the rank-related issue. The benefits of the proposed method are illustrated under various operating conditions and parameter values, with comparison between the three above-mentioned scenarios. [less ▲] Detailed reference viewed: 177 (25 UL)![]() Gautam, Sumit ![]() ![]() ![]() Scientific Conference (2020, May 29) In this paper, we investigate a simultaneous wireless information and power transmission (SWIPT) system, wherein a single multi-antenna transmitter serves multiple single-antenna users which employ the ... [more ▼] In this paper, we investigate a simultaneous wireless information and power transmission (SWIPT) system, wherein a single multi-antenna transmitter serves multiple single-antenna users which employ the power-splitting (PS) receiver architecture. We formulate a Symbol-Level Precoding (SLP) based transmit power minimization problem dependent on the minimum signal-to-interference-plus-noise ratio (SINR) and energy harvesting (EH) thresholds. We solve the corresponding non-negative convex quadratic optimization problem per time frame of transmitted symbols and study the benefits of proposed design under Zero-Forcing (ZF) Precoding, Direct Demand SLP (DD-SLP), and Squared-Root Demand SLP (RD-SLP) techniques. A static PS-ratio is fixed according to the SINR and EH demands to enable the segregation of intended received signals for information decoding (ID) and EH, respectively. Numerical results show the property conservation of SINR-enhancement via SLP at the ID unit while increasing the harvested energy at each of the end-users. [less ▲] Detailed reference viewed: 218 (29 UL)![]() Vu, Thang Xuan ![]() ![]() ![]() in IEEE Wireless Communications and Networking Conference (WCNC), Seoul, 25-38 May 2020 (2020, May) In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) multiuser systems, in which a base station serves a set of users with both information and ... [more ▼] In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) multiuser systems, in which a base station serves a set of users with both information and energy simultaneously via a power splitting (PS) mechanism. To capture realistic scenarios, a nonlinear energy harvesting (EH) model is considered. In particular, we jointly design the PS factors and the beamforming vectors in order to maximize the total harvested energy, subjected to rate requirements and a total transmit power budget. To deal with the inherent non-convexity of the formulated problem, an iterative optimization algorithm is proposed based on the inner approximation method and semidefinite relaxation (SDR), whose convergence is theoretically guaranteed. Numerical results show that the proposed scheme significantly outperforms the baseline max-min based SWIPT multicast and fixed-power PS designs. [less ▲] Detailed reference viewed: 198 (2 UL)![]() Gautam, Sumit ![]() Doctoral thesis (2020) The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world ... [more ▼] The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world population keeps witnessing or hearing about new generations of mobile/wireless technologies within every half to one decade. It is certain the wireless communication systems have enabled the exchange of information without any physical cable(s), however, the dependence of the mobile devices on the power cables still persist. Each passing year unveils several critical challenges related to the increasing capacity and performance needs, power optimization at complex hardware circuitries, mobility of the users, and demand for even better energy efficiency algorithms at the wireless devices. Moreover, an additional issue is raised in the form of continuous battery drainage at these limited-power devices for sufficing their assertive demands. In this regard, optimal performance at any device is heavily constrained by either wired, or an inductive based wireless recharging of the equipment on a continuous basis. This process is very inconvenient and such a problem is foreseen to persist in future, irrespective of the wireless communication method used. Recently, a promising idea for simultaneous wireless radio-frequency (RF) transmission of information and energy came into spotlight during the last decade. This technique does not only guarantee a more flexible recharging alternative, but also ensures its co-existence with any of the existing (RF-based) or alternatively proposed methods of wireless communications, such as visible light communications (VLC) (e.g., Light Fidelity (Li-Fi)), optical communications (e.g., LASER-equipped communication systems), and far-envisioned quantum-based communication systems. In addition, this scheme is expected to cater to the needs of many current and future technologies like wearable devices, sensors used in hazardous areas, 5G and beyond, etc. This Thesis presents a detailed investigation of several interesting scenarios in this direction, specifically concerning design and optimization of such RF-based power transfer systems. The first chapter of this Thesis provides a detailed overview of the considered topic, which serves as the foundation step. The details include the highlights about its main contributions, discussion about the adopted mathematical (optimization) tools, and further refined minutiae about its organization. Following this, a detailed survey on the wireless power transmission (WPT) techniques is provided, which includes the discussion about historical developments of WPT comprising its present forms, consideration of WPT with wireless communications, and its compatibility with the existing techniques. Moreover, a review on various types of RF energy harvesting (EH) modules is incorporated, along with a brief and general overview on the system modeling, the modeling assumptions, and recent industrial considerations. Furthermore, this Thesis work has been divided into three main research topics, as follows. Firstly, the notion of simultaneous wireless information and power transmission (SWIPT) is investigated in conjunction with the cooperative systems framework consisting of single source, multiple relays and multiple users. In this context, several interesting aspects like relay selection, multi-carrier, and resource allocation are considered, along with problem formulations dealing with either maximization of throughput, maximization of harvested energy, or both. Secondly, this Thesis builds up on the idea of transmit precoder design for wireless multigroup multicasting systems in conjunction with SWIPT. Herein, the advantages of adopting separate multicasting and energy precoder designs are illustrated, where we investigate the benefits of multiple antenna transmitters by exploiting the similarities between broadcasting information and wirelessly transferring power. The proposed design does not only facilitates the SWIPT mechanism, but may also serve as a potential candidate to complement the separate waveform designing mechanism with exclusive RF signals meant for information and power transmissions, respectively. Lastly, a novel mechanism is developed to establish a relationship between the SWIPT and cache-enabled cooperative systems. In this direction, benefits of adopting the SWIPT-caching framework are illustrated, with special emphasis on an enhanced rate-energy (R-E) trade-off in contrast to the traditional SWIPT systems. The common notion in the context of SWIPT revolves around the transmission of information, and storage of power. In this vein, the proposed work investigates the system wherein both information and power can be transmitted and stored. The Thesis finally concludes with insights on the future directions and open research challenges associated with the considered framework. [less ▲] Detailed reference viewed: 353 (51 UL)![]() Gautam, Sumit ![]() Doctoral thesis (2020) The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world ... [more ▼] The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world population keeps witnessing or hearing about new generations of mobile/wireless technologies within every half to one decade. It is certain the wireless communication systems have enabled the exchange of information without any physical cable(s), however, the dependence of the mobile devices on the power cables still persist. Each passing year unveils several critical challenges related to the increasing capacity and performance needs, power optimization at complex hardware circuitries, mobility of the users, and demand for even better energy efficiency algorithms at the wireless devices. Moreover, an additional issue is raised in the form of continuous battery drainage at these limited-power devices for sufficing their assertive demands. In this regard, optimal performance at any device is heavily constrained by either wired, or an inductive based wireless recharging of the equipment on a continuous basis. This process is very inconvenient and such a problem is foreseen to persist in future, irrespective of the wireless communication method used. Recently, a promising idea for simultaneous wireless radio-frequency (RF) transmission of information and energy came into spotlight during the last decade. This technique does not only guarantee a more flexible recharging alternative, but also ensures its co-existence with any of the existing (RF-based) or alternatively proposed methods of wireless communications, such as visible light communications (VLC) (e.g., Light Fidelity (Li-Fi)), optical communications (e.g., LASER-equipped communication systems), and far-envisioned quantum-based communication systems. In addition, this scheme is expected to cater to the needs of many current and future technologies like wearable devices, sensors used in hazardous areas, 5G and beyond, etc. This Thesis presents a detailed investigation of several interesting scenarios in this direction, specifically concerning design and optimization of such RF-based power transfer systems. The first chapter of this Thesis provides a detailed overview of the considered topic, which serves as the foundation step. The details include the highlights about its main contributions, discussion about the adopted mathematical (optimization) tools, and further refined minutiae about its organization. Following this, a detailed survey on the wireless power transmission (WPT) techniques is provided, which includes the discussion about historical developments of WPT comprising its present forms, consideration of WPT with wireless communications, and its compatibility with the existing techniques. Moreover, a review on various types of RF energy harvesting (EH) modules is incorporated, along with a brief and general overview on the system modeling, the modeling assumptions, and recent industrial considerations. Furthermore, this Thesis work has been divided into three main research topics, as follows. Firstly, the notion of simultaneous wireless information and power transmission (SWIPT) is investigated in conjunction with the cooperative systems framework consisting of single source, multiple relays and multiple users. In this context, several interesting aspects like relay selection, multi-carrier, and resource allocation are considered, along with problem formulations dealing with either maximization of throughput, maximization of harvested energy, or both. Secondly, this Thesis builds up on the idea of transmit precoder design for wireless multigroup multicasting systems in conjunction with SWIPT. Herein, the advantages of adopting separate multicasting and energy precoder designs are illustrated, where we investigate the benefits of multiple antenna transmitters by exploiting the similarities between broadcasting information and wirelessly transferring power. The proposed design does not only facilitates the SWIPT mechanism, but may also serve as a potential candidate to complement the separate waveform designing mechanism with exclusive RF signals meant for information and power transmissions, respectively. Lastly, a novel mechanism is developed to establish a relationship between the SWIPT and cache-enabled cooperative systems. In this direction, benefits of adopting the SWIPT-caching framework are illustrated, with special emphasis on an enhanced rate-energy (R-E) trade-off in contrast to the traditional SWIPT systems. The common notion in the context of SWIPT revolves around the transmission of information, and storage of power. In this vein, the proposed work investigates the system wherein both information and power can be transmitted and stored. The Thesis finally concludes with insights on the future directions and open research challenges associated with the considered framework. [less ▲] Detailed reference viewed: 230 (14 UL)![]() Gautam, Sumit ![]() ![]() ![]() in IEEE Communications Society Magazine (2019) The key to developing future generations of wireless communication systems lies in the expansion of extant methodologies, which ensures the coexistence of a variety of devices within a system. In this ... [more ▼] The key to developing future generations of wireless communication systems lies in the expansion of extant methodologies, which ensures the coexistence of a variety of devices within a system. In this paper, we assume several multicasting (MC) groups comprising three types of heterogeneous users including Information Decoding (ID), Energy Harvesting (EH) and both ID and EH. We present a novel framework to investigate the multi-group (MG) - MC precoder designs for three different scenarios, namely, Separate Multicast and Energy Precoding Design (SMEP), Joint Multicast and Energy Precoding Design (JMEP), and Per-User Information and/or Energy Precoding Design (PIEP). In the considered system, a multi-antenna source transmits the relevant information and/or energy to the groups of corresponding receivers using more than one MC streams. The data processing users employ the conventional ID receiver architectures, the EH users make use of a non-linear EH module for energy acquisition, while the users capable of performing both ID and EH utilize the separated architecture with disparate ID and non-linear EH units. Our contribution is threefold. Firstly, we propose an optimization framework to i) minimize the total transmit power and ii) to maximize the sum harvested energy, the two key performance metrics of MG-MC systems. The proposed framework allows the analysis of the system under arbitrary given quality of service and harvested energy requirements. Secondly, to deal with the non-convexity of the formulated problems, we transform the original problems respectively into equivalent forms, which can be effectively solved by semi-definite relaxation (SDR) and alternating optimization. The convergence of the proposed algorithms is analytically guaranteed. Thirdly, a comparative study between the proposed schemes is conducted via extensive numerical results, wherein the benefits of adopting SMEP over JMEP and PIEP models are discussed [less ▲] Detailed reference viewed: 189 (25 UL)![]() Gautam, Sumit ![]() ![]() ![]() Scientific Conference (2019, September 05) We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys ... [more ▼] We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys information and/or energy to the groups of corresponding receivers using more than one multicast streams. The information specific users have conventional receiver architectures to process data, energy harvesting users collect energy using the non-linear energy harvesting module and each of the joint information decoding and energy harvesting capable user is assumed to employ the separated architecture with disparate non-linear energy harvesting and conventional information decoding units. In this context, we formulate and analyze the problem of total transmit power minimization for optimal precoder design subjected to minimum signal-to-interference-and-noise ratio and harvested energy demands at the respective users under three different scenarios. This problem is solved via semi-definite relaxation and the advantages of employing separate information and energy precoders are shown over joint and per-user information and energy precoder designs. Simulation results illustrate the benefits of proposed framework under several operating conditions and parameter values. [less ▲] Detailed reference viewed: 194 (20 UL)![]() Gautam, Sumit ![]() ![]() ![]() Scientific Conference (2019, April) We propose a novel formulation for joint maximization of total weighted sum-spectral efficiency and weighted sum-harvested energy to study Simultaneous Wireless Information and Power Transfer (SWIPT) from ... [more ▼] We propose a novel formulation for joint maximization of total weighted sum-spectral efficiency and weighted sum-harvested energy to study Simultaneous Wireless Information and Power Transfer (SWIPT) from a pricing perspective. Specifically, we consider that a transmit source communicates with multiple destinations using Orthogonal Frequency Division Multiplexing (OFDM) system within a dual-hop relay-assisted network, where the destination nodes are capable of jointly decoding information and harvesting energy from the same radio-frequency (RF) signal using either the time-switching (TS) or power-splitting (PS) based SWIPT receiver architectures. Computation of the optimal solution for the aforementioned problem is an extremely challenging task as joint optimization of several network resources introduce intractability at high numeric values of relays, destination nodes and OFDM sub-carriers. Therefore, we present a suitable algorithm with sub-optimal results and good performance to compute the performance of joint data processing and harvesting energy under fixed pricing methods by adjusting the respective weight factors, motivated by practical statistics. Furthermore, by exploiting the binary options of the weights, we show that the proposed formulation can be regulated purely as a sum-spectral efficiency maximization or solely as a sum-harvested energy maximization problem. Numerical results illustrate the benefits of the proposed design under several operating conditions and parameter values. [less ▲] Detailed reference viewed: 159 (16 UL)![]() Gautam, Sumit ![]() ![]() ![]() in IEEE Transactions on Wireless Communications (2019) We investigate the resource allocation and relay selection in a two-hop relay-assisted multi-user Orthogonal Frequency Division Multiple Access (OFDMA) network, where the end-nodes support Simultaneous ... [more ▼] We investigate the resource allocation and relay selection in a two-hop relay-assisted multi-user Orthogonal Frequency Division Multiple Access (OFDMA) network, where the end-nodes support Simultaneous Wireless Information and Power Transfer (SWIPT) employing a Power Splitting (PS) technique. Our goal is to optimize the end-nodes’ power splitting ratios as well as the relay, carrier and power assignment so that the sum-rate of the system is maximized subject to harvested energy and transmitted power constraints. Such joint optimization with mixed integer non-linear programming structure is combinatorial in nature. Due to the complexity of this problem, we propose to solve its dual problem which guarantees asymptotic optimality and less execution time compared to a highly-complex exhaustive search approach. Furthermore, we also present a heuristic method to solve this problem with lower computational complexity. Simulation results reveal that the proposed algorithms provide significant performance gains compared to a semi-random resource allocation and relay selection approach and close to the optimal solution when the number of OFDMA sub-carriers is sufficiently large. [less ▲] Detailed reference viewed: 277 (44 UL)![]() Gautam, Sumit ![]() ![]() ![]() in Duong, Trung; Chu, Xiaoli; Suraweera, Himal (Eds.) Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications (2019) In this chapter, we investigate the performance of a time-switching (TS) based energy harvesting model for cache-assisted simultaneous wireless transmission of information and energy (Wi-TIE). In the ... [more ▼] In this chapter, we investigate the performance of a time-switching (TS) based energy harvesting model for cache-assisted simultaneous wireless transmission of information and energy (Wi-TIE). In the considered system, a relay which is equipped with both caching and energy harvesting capabilities helps a source to convey information to a destination. Based on the time-splitting mechanism, we analyze the effect of caching on the system performance in terms of stored energy at the relay and the relay-destination link throughput. In particular, two optimization problems are formulated to maximize the energy stored at the relay and the relay-destination throughput. By using KKT method, closed-form solution are obtained for both the problems. Finally, the performance of the proposed design under various operating conditions and parameter values is illustrated using numerical results. [less ▲] Detailed reference viewed: 189 (33 UL)![]() Gautam, Sumit ![]() ![]() ![]() Scientific Conference (2018, December) In this paper, we investigate resource allocation and relay selection in a dual-hop orthogonal frequency division multiplexing (OFDM)-based multi-user network where amplify-and-forward (AF) enabled relays ... [more ▼] In this paper, we investigate resource allocation and relay selection in a dual-hop orthogonal frequency division multiplexing (OFDM)-based multi-user network where amplify-and-forward (AF) enabled relays facilitate simultaneous wireless information and power transfer (SWIPT) to the end-users. In this context, we address an optimization problem to maximize the end-users’ sum-rate subjected to transmit power and harvested energy constraints. Furthermore, the problem is formulated for both time-switching (TS) and power-splitting (PS) SWIPT schemes.We aim at optimizing the users’ SWIPT splitting factors as well as sub-carrier–destination assignment, sub-carrier pairing, and relay–destination coupling metrics. This kind of joint evaluation is combinatorial in nature with non-linear structure involving mixed-integer programming. In this vein, we propose a sub-optimal low complex sequential resource distribution (SRD) method to solve the aforementioned problem. The performance of the proposed SRD technique is compared with a semi-random resource allocation and relay selection approach. Simulation results reveal the benefits of the proposed design under several parameter values with various operating conditions to illustrate the efficiency of SWIPT schemes for the proposed techniques. [less ▲] Detailed reference viewed: 230 (17 UL)![]() Gautam, Sumit ![]() ![]() ![]() Scientific Conference (2018, December) We investigate the performances of the time-switching (TS) and power-splitting (PS) based energy harvesting models in a two-hop relay assisted network where the end-users are capable of decoding ... [more ▼] We investigate the performances of the time-switching (TS) and power-splitting (PS) based energy harvesting models in a two-hop relay assisted network where the end-users are capable of decoding information and harvesting energy concurrently. In particular, we consider joint resource allocation and relay selection to realize Simultaneous Wireless Transmission of Information and Energy (Wi-TIE) in a multi-carrier multi-user cooperative system where the relays employ the amplify-and-forward (AF) protocol. First, we formulate based on the TS and PS Wi-TIE architectures an optimization problem to maximize the sum of energy harvested at the end-users, taking into consideration each user's quality-of-service (QoS) requirement as well as power constraints at the transmit and relaying nodes. We then solve the formulated problem to optimize the users' Wi-TIE splitting factors along with relay-user coupling, sub-carrier-user assignment, sub-carrier pairing, and power allocation. Finally, we demonstrate the benefits of the proposed framework via numerical results. [less ▲] Detailed reference viewed: 176 (9 UL) |
||