References of "Gaudilliere, Vincent 50043311"
     in
Bookmark and Share    
Full Text
See detailPose Estimation of a Known Texture-Less Space Target using Convolutional Neural Networks
Rathinam, Arunkumar UL; Gaudilliere, Vincent UL; Pauly, Leo UL et al

in 73rd International Astronautical Congress, Paris 18-22 September 2022 (2022, September)

Orbital debris removal and On-orbit Servicing, Assembly and Manufacturing [OSAM] are the main areas for future robotic space missions. To achieve intelligence and autonomy in these missions and to carry ... [more ▼]

Orbital debris removal and On-orbit Servicing, Assembly and Manufacturing [OSAM] are the main areas for future robotic space missions. To achieve intelligence and autonomy in these missions and to carry out robot operations, it is essential to have autonomous guidance and navigation, especially vision-based navigation. With recent advances in machine learning, the state-of-the-art Deep Learning [DL] approaches for object detection, and camera pose estimation have advanced to be on par with classical approaches and can be used for target pose estimation during relative navigation scenarios. The state-of-the-art DL-based spacecraft pose estimation approaches are suitable for any known target with significant surface textures. However, it is less applicable in a scenario where the target is a texture-less and symmetric object like rocket nozzles. This paper investigates a novel ellipsoid-based approach combined with convolutional neural networks for texture-less space object pose estimation. Also, this paper presents the dataset for a new texture-less space target, an apogee kick motor, which is used for the study. It includes the synthetic images generated from the simulator developed for rendering synthetic space imagery. [less ▲]

Detailed reference viewed: 68 (5 UL)
Full Text
Peer Reviewed
See detailCubeSat-CDT: A Cross-Domain Dataset for 6-DoF Trajectory Estimation of a Symmetric Spacecraft
Mohamed Ali, Mohamed Adel UL; Rathinam, Arunkumar UL; Gaudilliere, Vincent UL et al

in Proceedings of the 17th European Conference on Computer Vision Workshops (ECCVW 2022) (2022)

This paper introduces a new cross-domain dataset, CubeSat- CDT, that includes 21 trajectories of a real CubeSat acquired in a labora- tory setup, combined with 65 trajectories generated using two ... [more ▼]

This paper introduces a new cross-domain dataset, CubeSat- CDT, that includes 21 trajectories of a real CubeSat acquired in a labora- tory setup, combined with 65 trajectories generated using two rendering engines – i.e. Unity and Blender. The three data sources incorporate the same 1U CubeSat and share the same camera intrinsic parameters. In ad- dition, we conduct experiments to show the characteristics of the dataset using a novel and efficient spacecraft trajectory estimation method, that leverages the information provided from the three data domains. Given a video input of a target spacecraft, the proposed end-to-end approach re- lies on a Temporal Convolutional Network that enforces the inter-frame coherence of the estimated 6-Degree-of-Freedom spacecraft poses. The pipeline is decomposed into two stages; first, spatial features are ex- tracted from each frame in parallel; second, these features are lifted to the space of camera poses while preserving temporal information. Our re- sults highlight the importance of addressing the domain gap problem to propose reliable solutions for close-range autonomous relative navigation between spacecrafts. Since the nature of the data used during training impacts directly the performance of the final solution, the CubeSat-CDT dataset is provided to advance research into this direction. [less ▲]

Detailed reference viewed: 64 (11 UL)
Full Text
Peer Reviewed
See detailLeveraging Equivariant Features for Absolute Pose Regression
Mohamed Ali, Mohamed Adel UL; Gaudilliere, Vincent UL; Ortiz Del Castillo, Miguel UL et al

in IEEE Conference on Computer Vision and Pattern Recognition. (2022)

Pose estimation enables vision-based systems to refer to their environment, supporting activities ranging from scene navigation to object manipulation. However, end-to-end approaches, that have achieved ... [more ▼]

Pose estimation enables vision-based systems to refer to their environment, supporting activities ranging from scene navigation to object manipulation. However, end-to-end approaches, that have achieved state-of-the-art performance in many perception tasks, are still unable to compete with 3D geometry-based methods in pose estimation. Indeed, absolute pose regression has been proven to be more related to image retrieval than to 3D structure. Our assumption is that statistical features learned by classical convolutional neural networks do not carry enough geometrical information for reliably solving this task. This paper studies the use of deep equivariant features for end-to-end pose regression. We further propose a translation and rotation equivariant Convolutional Neural Network whose architecture directly induces representations of camera motions into the feature space. In the context of absolute pose regression, this geometric property allows for implicitly augmenting the training data under a whole group of image plane-preserving transformations. Therefore, directly learning equivariant features efficiently compensates for learning intermediate representations that are indirectly equivariant yet data-intensive. Extensive experimental validation demonstrates that our lightweight model outperforms existing ones on standard datasets. [less ▲]

Detailed reference viewed: 83 (0 UL)
Full Text
Peer Reviewed
See detailLSPnet: A 2D Localization-oriented Spacecraft Pose Estimation Neural Network
Garcia Sanchez, Albert UL; Mohamed Ali, Mohamed Adel UL; Gaudilliere, Vincent UL et al

in Proceedings of Conference on Computer Vision and Pattern Recognition Workshops (2021, June)

Being capable of estimating the pose of uncooperative objects in space has been proposed as a key asset for enabling safe close-proximity operations such as space rendezvous, in-orbit servicing and active ... [more ▼]

Being capable of estimating the pose of uncooperative objects in space has been proposed as a key asset for enabling safe close-proximity operations such as space rendezvous, in-orbit servicing and active debris removal. Usual approaches for pose estimation involve classical computer vision-based solutions or the application of Deep Learning (DL) techniques. This work explores a novel DL-based methodology, using Convolutional Neural Networks (CNNs), for estimating the pose of uncooperative spacecrafts. Contrary to other approaches, the proposed CNN directly regresses poses without needing any prior 3D information. Moreover, bounding boxes of the spacecraft in the image are predicted in a simple, yet efficient manner. The performed experiments show how this work competes with the state-of-the-art in uncooperative spacecraft pose estimation, including works which require 3D information as well as works which predict bounding boxes through sophisticated CNNs. [less ▲]

Detailed reference viewed: 251 (34 UL)
Full Text
Peer Reviewed
See detailSPACECRAFT RECOGNITION LEVERAGING KNOWLEDGE OF SPACE ENVIRONMENT: SIMULATOR, DATASET, COMPETITION DESIGN, AND ANALYSIS
Mohamed Ali, Mohamed Adel UL; Gaudilliere, Vincent UL; Ghorbel, Enjie UL et al

in 2021 IEEE International Conference on Image Processing (ICIP) (2021)

Detailed reference viewed: 77 (16 UL)