References of "Garcia, Pierre 50001824"
     in
Bookmark and Share    
Full Text
See detailAn archaeal compound as a driver of Parkinson’s disease pathogenesis
Trezzi, Jean-Pierre; Aho, Velma UL; Jäger, Christian UL et al

E-print/Working paper (2022)

Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial ... [more ▼]

Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial taxa, changes to viral and archaeal populations have also been observed. Mechanistic links between gut microbes and PD pathogenesis remain elusive but could involve molecules that promote α-synuclein aggregation. Here, we show that 2-hydroxypyridine (2-HP) represents a key molecule for the pathogenesis of PD. We observe significantly elevated 2-HP levels in faecal samples from patients with PD or its prodrome, idiopathic REM sleep behaviour disorder (iRBD), compared to healthy controls. 2-HP is correlated with the archaeal species Methanobrevibacter smithii and with genes involved in methane metabolism, and it is detectable in isolate cultures of M. smithii. We demonstrate that 2-HP is selectively toxic to transgenic α-synuclein overexpressing yeast and increases α-synuclein aggregation in a yeast model as well as in human induced pluripotent stem cell derived enteric neurons. It also exacerbates PD-related motor symptoms, α-synuclein aggregation, and striatal degeneration when injected intrastriatally in transgenic mice overexpressing human α-synuclein. Our results highlight the effect of an archaeal molecule in relation to the gut-brain axis, which is critical for the diagnosis, prognosis, and treatment of PD. [less ▲]

Detailed reference viewed: 133 (12 UL)
Full Text
Peer Reviewed
See detailSingle-cell transcriptional profiling and gene regulatory network modeling in Tg2576 mice reveal gender-dependent molecular features preceding Alzheimer-like pathologies
Ali, Muhammad UL; Huarte, Oihane; Heurtaux, Tony UL et al

in Molecular Neurobiology (2022), in press (doi:10.1007/s12035-022-02985-2)(in press),

Alzheimer’s disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both ... [more ▼]

Alzheimer’s disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both in the relative risk of developing AD and in clinical disease manifestations. A molecular level understanding of these gender disparities is still missing, but could provide important clues on cellular mechanisms modulating the disease and reveal new targets for gender-oriented disease-modifying precision therapies. We therefore present here a comprehensive single-cell analysis of disease-associated molecular gender differences in transcriptomics data from the neocortex, one of the brain regions most susceptible to AD, in one of the most widely used AD mouse models, the Tg2576 model. Cortical areas are also most commonly used in studies of post-mortem AD brains. To identify disease-linked molecular processes that occur before the onset of detectable neuropathology, we focused our analyses on an age with no detectable plaques and microgliosis. Cell-type specific alterations were investigated at the level of individual genes, pathways, and gene regulatory networks. The number of differentially expressed genes (DEGs) was not large enough to build context-specific gene regulatory networks for each individual cell type, and thus, we focused on the study of cell types with dominant changes and included analyses of changes across the combination of cell types. We observed significant disease-associated gender differences in cellular processes related to synapse organization and axonogenesis, and identified a limited set of transcription factors, including Egr1 and Klf6, as key regulators of many of the disease-associated and gender-dependent gene expression changes in the model. Overall, our analyses revealed significant celltype-specific gene expression changes in individual genes, pathways and subnetworks, including gender-specific and gender-dimorphic changes in both upstream transcription factors and their downstream targets, in the Tg2576 AD model before the onset of overt disease. This opens a window into molecular events that could determine gender-susceptibility to AD, and uncovers tractable target candidates for potential gender-specific precision medicine for AD. [less ▲]

Detailed reference viewed: 99 (5 UL)
Full Text
Peer Reviewed
See detailNeurodegeneration and neuroinflammation are linked, but independent of a-synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease
Garcia, Pierre UL; Wemheuer, W.; Uriarte, O. et al

in Glia (2022)

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other ... [more ▼]

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α-syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α-syn induced by striatal injection of α-syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α-syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α-syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α-syn inclusion formation is not the major driver in the early phases of PD-like neurodegeneration, but that microglia, activated by diffusible, oligomeric α-syn, may play a key role in this process. Our findings uncover new features of α-syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α-syn spreading. [less ▲]

Detailed reference viewed: 173 (23 UL)
Full Text
Peer Reviewed
See detailSingle‑nuclei chromatin profiling of ventral midbrain reveals cell identity transcription factors and cell‑type‑specific gene regulatory variation
Gui, Yujuan; Grzyb, Kamil UL; Thomas, Melanie UL et al

in Epigenetics and Chromatin (2021)

Background: Cell types in ventral midbrain are involved in diseases with variable genetic susceptibility, such as Parkinson’s disease and schizophrenia. Many genetic variants affect regulatory regions and ... [more ▼]

Background: Cell types in ventral midbrain are involved in diseases with variable genetic susceptibility, such as Parkinson’s disease and schizophrenia. Many genetic variants affect regulatory regions and alter gene expression in a cell-type-specific manner depending on the chromatin structure and accessibility. Results: We report 20,658 single-nuclei chromatin accessibility profiles of ventral midbrain from two genetically and phenotypically distinct mouse strains. We distinguish ten cell types based on chromatin profiles and analysis of accessible regions controlling cell identity genes highlights cell-type-specific key transcription factors. Regulatory variation segregating the mouse strains manifests more on transcriptome than chromatin level. However, cell-type-level data reveals changes not captured at tissue level. To discover the scope and cell-type specificity of cis-acting variation in midbrain gene expression, we identify putative regulatory variants and show them to be enriched at differentially expressed loci. Finally, we find TCF7L2 to mediate trans-acting variation selectively in midbrain neurons. Conclusions: Our data set provides an extensive resource to study gene regulation in mesencephalon and provides insights into control of cell identity in the midbrain and identifies cell-type-specific regulatory variation possibly underlying phenotypic and behavioural differences between mouse strains. [less ▲]

Detailed reference viewed: 120 (14 UL)
Full Text
Peer Reviewed
See detailQuantitative trait locus mapping identifies a locus linked to striatal dopamine and points to collagen IV alpha-6 chain as a novel regulator of striatal axonal branching in mice
Thomas, Melanie UL; Gui, Yujuan; Garcia, Pierre UL et al

in Genes, Brain, and Behavior (2021)

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to ... [more ▼]

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to loss of striatal dopamine (DA). Here, we measured DA concentration in the dorsal striatum of 32 members of Collaborative Cross (CC) family and their eight founder strains. Striatal DA varied greatly in founders, and differences were highly heritable in the inbred CC progeny. We identified a locus, containing 164 genes, linked to DA concentration in the dorsal striatum on chromosome X. We used RNAseq profiling of the ventral midbrain of two founders with substantial difference in striatal DA–C56BL/6 J and A/J—to highlight potential protein-coding candidates modulating this trait. Among the five differentially expressed genes within the locus, we found that the gene coding for the collagen IV alpha 6 chain (Col4a6) was expressed nine times less in A/J than in C57BL/6J. Using single cell RNA-seq data from developing human midbrain, we found that COL4A6 is highly expressed in radial glia-like cells and neuronal progenitors, indicating a role in neuronal development. Collagen IV alpha-6 chain (COL4A6) controls axogenesis in simple model organisms. Consistent with these findings, A/J mice had less striatal axonal branching than C57BL/6J mice. We tentatively conclude that DA concentration and axonal branching in dorsal striatum are modulated by COL4A6, possibly during development. Our study shows that genetic mapping based on an easily measured Central Nervous System (CNS) trait, using the CC population, combined with follow-up observations, can parse heritability of such a trait, and nominate novel functions for commonly expressed proteins. [less ▲]

Detailed reference viewed: 50 (7 UL)
Full Text
Peer Reviewed
See detailTranscriptome profiling data reveals Ubiquitin-Specific Peptidase 9 knockdown effects
Glaab, Enrico UL; Antony, Paul UL; Köglsberger, Sandra et al

in Data in Brief (2019), 25(1), 104130

Ubiquitin specific peptidase 9 (USP9) is a deubiquitinase encoded by a sex-linked gene with a Y-chromosomal form (USP9Y) and an X-chromosomal form (USP9X) that escapes X-inactivation. Since USP9 is a key ... [more ▼]

Ubiquitin specific peptidase 9 (USP9) is a deubiquitinase encoded by a sex-linked gene with a Y-chromosomal form (USP9Y) and an X-chromosomal form (USP9X) that escapes X-inactivation. Since USP9 is a key regulatory gene with sex-linked expression in the human brain, the gene may be of interest for researchers studying molecular gender differences and ubiquitin signaling in the brain. To assess the downstream effects of knocking down USP9X and USP9Y on a transcriptome-wide scale, we have conducted microarray profiling experiments using the human DU145 prostate cancer cell culture model, after confirming the robust expression of both USP9X and USP9Y in this model. By designing shRNA constructs for the specific knockdown of USP9X and the joint knockdown of USP9X and USP9Y, we have compared gene expression changes in both knockdowns to control conditions to infer potential shared and X- or Y-form specific alterations. Here, we provide details of the corresponding microarray profiling data, which has been deposited in the Gene Expression Omnibus database (GEO series accession number GSE79376). A biological interpretation of the data in the context of a potential involvement of USP9 in Alzheimer’s disease has previously been presented in Köglsberger et al. (2016). To facilitate the re-use and re-analysis of the data for other applications, e.g. the study of ubiquitin signaling and protein turnover control, and the regulation of molecular gender differences in the human brain and brain-related disorders, we provide a more in-depth discussion of the data properties, specifications and possible use cases. [less ▲]

Detailed reference viewed: 160 (3 UL)
Full Text
Peer Reviewed
See detailGender-specific expression of ubiquitin-specific peptidase 9 modulates tau expression and phosphorylation: possible implications for tauopathies
Köglsberger, Sandra UL; Cordero Maldonado, Maria Lorena UL; Antony, Paul UL et al

in Molecular Neurobiology (2017), 54(10), 79797993

Public transcriptomics studies have shown that several genes display pronounced gender differences in their expression in the human brain, which may influence the manifestations and risk for neuronal ... [more ▼]

Public transcriptomics studies have shown that several genes display pronounced gender differences in their expression in the human brain, which may influence the manifestations and risk for neuronal disorders. Here we apply a transcriptome-wide analysis to discover genes with gender-specific expression and significant alterations in public post mortem brain tissue from Alzheimer’s disease (AD) patients compared to controls. We identify the sex-linked ubiquitin specific peptidase 9 (USP9) as an outstanding candidate gene with highly significant expression differences between the genders and male-specific under-expression in AD. Since previous studies have shown that USP9 can modulate the phosphorylation of the AD-associated protein MAPT, we investigate functional associations between USP9 and MAPT in further detail. After observing a high positive correlation between the expression of USP9 and MAPT in the public transcriptomics data, we show that USP9 knockdown results in significantly decreased MAPT expression in a DU145 cell culture model and a concentration-dependent decrease for the MAPT orthologs mapta and maptb in a zebrafish model. From the analysis of microarray and qRT-PCR experiments for the knockdown in DU145 cells and prior knowledge from the literature, we derive a data-congruent model for a USP9-dependent regulatory mechanism modulating MAPT expression via BACH1 and SMAD4. Overall, the analyses suggest USP9 may contribute to molecular gender differences observed in tauopathies and provide a new target for intervention strategies to modulate MAPT expression. [less ▲]

Detailed reference viewed: 435 (35 UL)
Full Text
Peer Reviewed
See detailAbsence of regulator of G-protein signaling 4 does not protect against dopamine neuron dysfunction and injury in the mouse 6-hydroxydopamine lesion model of Parkinson's disease
Ashrafi, Amer UL; Garcia, Pierre UL; Kollmus, Heike et al

in Neurobiology of Aging (2017), 58

Regulator of G-Protein Signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy ... [more ▼]

Regulator of G-Protein Signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy and Parkinson’s disease (PD). In the case of PD, the main current option for alleviating motor symptoms are dopamine replacement therapies, which have limitations because of side effects, and reduced effectiveness over the long term. Research on new non-dopaminergic PD drug targets has indicated that inhibition of RGS4 could be an effective adjuvant treatment option. The effectiveness of RGS4 inhibition for an array of PD-linked functional and structural neuroprotection endpoints has not yet been demonstrated. Here, we use the 6-Hydroxydopamine (6-OHDA) lesioning model of the nigrostriatal pathway in mice to address this question. We observe, using a battery of behavioral and pathological measures, that mice deficient for RGS4 are not protected from 6-OHDA induced injury, and show enhanced susceptibility in some measures of motor function. Our results suggest that inhibition of RGS4 as a non-dopaminergic target for PD should be approached with caution. [less ▲]

Detailed reference viewed: 284 (34 UL)
Full Text
Peer Reviewed
See detailExploring therapeutic viability of a non-dopaminergic target for Parkinson’s disease
Ashrafi, Amer; Buttini, Manuel UL; Garcia, Pierre UL et al

in Movement Disorders (2016), 31(2), 630

Detailed reference viewed: 77 (3 UL)
Full Text
Peer Reviewed
See detailThe Mouse Brain Metabolome: Region-Specific Signatures and Response to Excitotoxic Neuronal Injury
Jäger, Christian UL; Glaab, Enrico UL; Michelucci, Alessandro UL et al

in American Journal of Pathology (2015), 185(6), 1699-1712

Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems' analyses, or omics approaches, have become an important tool in characterizing ... [more ▼]

Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems' analyses, or omics approaches, have become an important tool in characterizing this process. Although RNA and protein profiling made their entry into this field a couple of decades ago, metabolite profiling is a more recent addition. The metabolome represents a large part or all metabolites in a tissue, and gives a snapshot of its physiology. By using gas chromatography coupled to mass spectrometry, we analyzed the metabolic profile of brain regions of the mouse, and found that each region is characterized by its own metabolic signature. We then analyzed the metabolic profile of the mouse brain after excitotoxic injury, a mechanism of neurodegeneration implicated in numerous neurological diseases. More important, we validated our findings by measuring, histologically and molecularly, actual neurodegeneration and glial response. We found that a specific global metabolic signature, best revealed by machine learning algorithms, rather than individual metabolites, was the most robust correlate of neuronal injury and the accompanying gliosis, and this signature could serve as a global biomarker for neurodegeneration. We also observed that brain lesioning induced several metabolites with neuroprotective properties. Our results deepen the understanding of metabolic changes accompanying neurodegeneration in disease models, and could help rapidly evaluate these changes in preclinical drug studies. [less ▲]

Detailed reference viewed: 349 (97 UL)
Full Text
Peer Reviewed
See detailCritical role of cPLA2 in Aβ oligomer-induced neurodegeneration and memory deficit.
Desbène, Cédric; Malaplate-Armand, Catherine; Youssef, Ihsen et al

in Neurobiology of Aging (2012), 33(6), 1123-17-1123-29

Soluble beta-amyloid (Aβ) oligomers are considered to putatively play a critical role in the early synapse loss and cognitive impairment observed in Alzheimer's disease. We previously demonstrated that Aβ ... [more ▼]

Soluble beta-amyloid (Aβ) oligomers are considered to putatively play a critical role in the early synapse loss and cognitive impairment observed in Alzheimer's disease. We previously demonstrated that Aβ oligomers activate cytosolic phospholipase A2 (cPLA2), which specifically releases arachidonic acid from membrane phospholipids. We here observed that cPLA2 gene inactivation prevented the alterations of cognitive abilities and the reduction of hippocampal synaptic markers levels noticed upon a single intracerebroventricular injection of Aβ oligomers in wild type mice. We further demonstrated that the Aβ oligomer-induced sphingomyelinase activation was suppressed and that phosphorylation of Akt/protein kinase B (PKB) was preserved in neuronal cells isolated from cPLA2−/− mice. Interestingly, expression of the Aβ precursor protein (APP) was reduced in hippocampus homogenates and neuronal cells from cPLA2−/− mice, but the relationship with the resistance of these mice to the Aβ oligomer toxicity requires further investigation. These results therefore show that cPLA2 plays a key role in the Aβ oligomer-associated neurodegeneration, and as such represents a potential therapeutic target for the treatment of Alzheimer's disease. Keywords Alzheimer's disease; Cytosolic phospholipase A2; Soluble beta-amyloid oligomers; Memory; Apoptosis; Synaptotoxicity; Amyloid precursor protein [less ▲]

Detailed reference viewed: 182 (10 UL)
Full Text
Peer Reviewed
See detailCiliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer's disease.
Garcia, Pierre UL

in Journal of Neuroscience (2010), 30(22), 7516-7527

The development of novel therapeutic strategies for Alzheimer’s disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival ... [more ▼]

The development of novel therapeutic strategies for Alzheimer’s disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-beta oligomer-induced synaptic damages and associated cognitive impairments that typify AD. To ensure long-term administration of CNTF in the brain, we used recombinant cells secreting CNTF encapsulated in alginate polymers. The implantation of these bioreactors in the brain of Abeta ligomer-infused mice led to a continuous secretion of recombinant CNTF and was associated with the robust improvement of cognitive performances.Most importantly,CNTF led to full recovery of cognitive function associated with the stabilization of synaptic protein levels in the Tg2576 AD mouse model. In vitro as well as in vivo, CNTF activated a Janus kinase/signal transducer and activator of transcription-mediated survival pathway that prevented synaptic and neuronal degeneration. These preclinical studies suggest that CNTF and/or CNTF receptor-associated pathways may have AD-modifying activity through protection against progressive ABeta-related memory deficits. Our data also encourage additional exploration of ex vivo gene transfer for the prevention and/or treatment of AD. [less ▲]

Detailed reference viewed: 173 (7 UL)
Full Text
Peer Reviewed
See detailThe essential role of lipids in Alzheimer’s disease
Garcia, Pierre UL

in Biochimie (2009), 6

In the absence of efficient diagnostic and therapeutic tools, Alzheimer’s disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of ... [more ▼]

In the absence of efficient diagnostic and therapeutic tools, Alzheimer’s disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble b-amyloid (Ab) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Ab oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Ab-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD inci- dence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Ab peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Ab-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition- based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Ab oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease. [less ▲]

Detailed reference viewed: 105 (2 UL)