![]() ; ; van Dam, Tonie ![]() in Journal of Geodesy (2011) We use up to a 6-year span of GPS data from 85 globally distributed stations to compare solutions using ocean tidal loading (OTL) corrections computed in differ- ent reference frames: center of mass of ... [more ▼] We use up to a 6-year span of GPS data from 85 globally distributed stations to compare solutions using ocean tidal loading (OTL) corrections computed in differ- ent reference frames: center of mass of the solid Earth (CE), and center of mass of the Earth system (CM). We compare solution sets that differ only in the frame used for the OTL model computations, for three types of GPS solutions. In global solutions with all parameters including orbits estimated simultaneously, we find coordinate differences of ∼0.3mm between solutions using OTL computed in CM and OTL computed in CE. When orbits or orbits and clocks are fixed, larger biases appear if the user applies an OTL model inconsistent with that used to derive the orbit and clock products. Network solutions (orbits fixed, satellite clocks estimated) show differences smaller than 0.5 mm due to model inconsistency, but PPP solutions show distortions at the ∼1.3 mm level. The much larger effect on PPP solutions indicates that satellite clock estimates are sensitive to the OTL model applied. The time series of coordinate differences shows a strong spectral peak at a period of ∼14 days when inconsistent OTL models are applied and smaller peaks at ∼annual and ∼semi-annual periods, for both ambiguity-free and ambiguity-fixed solutions. These spurious coordinate variations disappear in solutions using consistent OTL mod- els. Users of orbit and clock products must ensure that they use OTL coefficients computed in the same reference frame as the OTL coefficients used by the analysis centers that produced the products they use; otherwise, systematic errors will be introduced into position solutions. All modern products should use loading models computed in the CM frame, but legacy products may require loading models computed in the CE frame. Analysts and authors need to document the frame used for all loading computations in product descriptions and papers. [less ▲] Detailed reference viewed: 147 (5 UL)![]() ![]() ; ; et al in Developmental Biology (1999), 210(1), 15-29 During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs ... [more ▼] During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs. These functions are mainly mediated by the diffusible signaling molecule Sonic hedgehog. The products of the paired-box-containing Pax1 and the mesenchyme forkhead-1 (Mfh1) genes are expressed in the developing sclerotome and are essential for the normal development of the vertebral column. Here, we demonstrate that Mfh1 like Pax1 expression is dependent on Sonic hedgehog signals from the notochord, and Mfh1 and Pax1 act synergistically to generate the vertebral column. In Mfh1/Pax1 double mutants, dorsomedial structures of the vertebrae are missing, resulting in extreme spina bifida accompanied by subcutaneous myelomeningocoele, and the vertebral bodies and intervertebral discs are missing. The morphological defects in Mfh1/Pax1 double mutants strongly correlate with the reduction of the mitotic rate of sclerotome cells. Thus, both the Mfh1 and the Pax1 gene products cooperate to mediate Sonic hedgehog-dependent proliferation of sclerotome cells. [less ▲] Detailed reference viewed: 120 (0 UL) |
||