![]() ; ; et al in Pure and Applied Geophysics (2023) Detailed reference viewed: 37 (0 UL)![]() ; ; et al in Geodesy and Geodynamics (2023), 14(1), 1-3 Detailed reference viewed: 30 (5 UL)![]() Francis, Olivier ![]() ![]() Report (2023) Detailed reference viewed: 34 (0 UL)![]() Francis, Olivier ![]() in Bondo Medhus; Lone Klinkby (Eds.) Engineering Geophysics (2022) Detailed reference viewed: 28 (2 UL)![]() Francis, Olivier ![]() in Geoscience Data Journal (2022), n/a(n/a), Abstract This report contains terrestrial absolute gravity measurements performed near the village of Kulusuk in southeast Greenland. It represents an exceptionally long time series of nearly two decades ... [more ▼] Abstract This report contains terrestrial absolute gravity measurements performed near the village of Kulusuk in southeast Greenland. It represents an exceptionally long time series of nearly two decades. The measurements began in July 1996 until July 2015. The station is located a few meters beside a permanent GNSS station. The final gravity values (g-values), more precisely the accelerations due to gravity, are listed along their associated uncertainties. A description of the station, a short explanation on the absolute gravimeter, and the data processing are presented. [less ▲] Detailed reference viewed: 24 (1 UL)![]() Francis, Olivier ![]() Report (2022) Detailed reference viewed: 20 (0 UL)![]() Francis, Olivier ![]() Report (2022) Detailed reference viewed: 20 (0 UL)![]() ; Francis, Olivier ![]() in Pure and Applied Geophysics (2022) In December 2019, the latest generation transportable superconducting gravimeter (SG) iGrav-043 purchased by the University of Bonn was installed in the Walferdange Underground Laboratory for Geodynamics ... [more ▼] In December 2019, the latest generation transportable superconducting gravimeter (SG) iGrav-043 purchased by the University of Bonn was installed in the Walferdange Underground Laboratory for Geodynamics (WULG) in the Grand Duchy of Luxembourg. In this paper, we estimate the calibration factor of the iGrav-043, which is essential for long-term gravity monitoring. We used simultaneously collected gravity data from the un-calibrated iGrav-043 and the calibrated Observatory superconducting gravimeter OSG-CT040 that operates continuously at WULG since 2002. The tidal analysis provides a simple way to transfer the calibration factor of one SG to the other. We then assess and compare tidal analyses, instrumental drifts and high frequency noises. After 20 years of continuous operation, the instrumental drift of the OSG-CT040 is almost zero. From 533 days of joint operation, we found that the instrumental drift of iGrav-043 exhibits a composite behavior: just after the setup and for two months a fast exponential decrease of 171 nm s−2, then a linear with a rate of 66 nm s−2 ± 10 nm s−2 per year. We suggest that a period of 3 months is sufficient for calibrating the iGrav. Accidental electrical power cuts triggered slight differences in the reaction and recovery of the OSG-CT040 and iGrav-043. However, it has been found that the long-term linear behavior of the drift was not affected. [less ▲] Detailed reference viewed: 43 (1 UL)![]() Francis, Olivier ![]() in Journal of Geodesy (2022), 96(1), 1-1 Detailed reference viewed: 65 (2 UL)![]() ; Francis, Olivier ![]() ![]() Scientific Conference (2022) The Federal Office of Metrology and Surveying (BEV) in Austria is responsible for the geodetic reference system like gravity and height reference frame. Some of these gravity reference stations are ... [more ▼] The Federal Office of Metrology and Surveying (BEV) in Austria is responsible for the geodetic reference system like gravity and height reference frame. Some of these gravity reference stations are monitored regularly by different geodetic terrestrial techniques. The gravity data on some stations show variations and/or changes in gravity. In this presentation, the alpine geodetic reference stations Obergurgl and Franz-Josefs- Höhe in the Austrian eastern Alps will be presented. Both stations are investigated with different geodetic terrestrial techniques in a cooperation of the University of Luxemburg with BEV. Global warming and associated climate change during the last century and recent decades are among the main reasons for glacier retreat in the Alps. Absolute gravity measurements have been regularly performed in the Austrian Eastern Alps since 1987 in the Ötztal Valley at Obergurgl. In addition, absolute gravity has been regularly observed at Obergurgl from 1987 to 2009 with the absolute gravimeter JILAg6. From 2010, the absolute gravity measurements were continued with the highest accurate absolute gravimeters FG5 from BEV and FG5x from University of Luxemburg. The newest gravity data show again a small increase of gravity. Additionally, a permanent GNSS station was established in 2019 to record information about the assumed vertical uplift at this station. A second alpine research station was established near the Pasterze Glacier at Großglockner Mountain in 2019. The Pasterze Glacier is one of the largest glaciers in the eastern Alps and is in the vicinity of the highest mountain of Austria, the Großglockner. The station is monitored by repeated absolute gravity measurements and is equipped with a permanent GNSS station. In addition, precise leveling measurements were also tied to this station. In this contribution, initial results of the geodetic research like the gravity results, precise leveling and GNSS measurements will be presented. In the future, gravity data will be quantitively compared to ice mass balance information derived from glacier inventories. A Geodetic Global Navigation Satellite System reflectometry (GNSS-R) antenna will also be installed to study glacier-ice change. A third station at an altitude of 3300 m is planned and will be checked for operating absolute gravity measurements there. The geodynamical processes like vertical uplift and postglacial deformation will be investigated together with glacier retreat on these stations. [less ▲] Detailed reference viewed: 57 (4 UL)![]() Francis, Olivier ![]() Report (2021) Detailed reference viewed: 42 (4 UL)![]() Francis, Olivier ![]() in Journal of Geodesy (2021), 95:116 The new-generation relative gravimeter Scintrex CG6 is put on the test bench: Its performance is compared to its predecessor, the Scintrex-CG5. A CG5 Scintrex and a CG6 Scintrex were both submitted to the ... [more ▼] The new-generation relative gravimeter Scintrex CG6 is put on the test bench: Its performance is compared to its predecessor, the Scintrex-CG5. A CG5 Scintrex and a CG6 Scintrex were both submitted to the same rigorous tests, which have been developed in recent years to highlight some defects of the CG5. The results show that the CG6 always performs better than the CG5. For instance, the instrumental drift is 5 times smaller for the CG6 than for the CG5. In the tidal bands, the noise level of the CG6 is 3 times lower than of the one of the CG5. We confirmed the tilt susceptibility of the CG5 and found that the CG6 is barely affected by long duration tilts before taking measurements. Unlike the CG5, the CG6 measurements are not influenced by external temperature variations. Overall, the CG6 provides more precise and stable gravity measurements compared to the CG5. [less ▲] Detailed reference viewed: 82 (4 UL)![]() Francis, Olivier ![]() ![]() Report (2021) Detailed reference viewed: 92 (19 UL)![]() Tabibi, Sajad ![]() ![]() in Geosciences (2021), 11(9 391), Geodetic Global Navigation Satellite System reflectometry (GNSS-R) uses ground-based signals of opportunity to retrieve sea levels at an intermediate spatial scale. Geodetic GNSS-R is based on the ... [more ▼] Geodetic Global Navigation Satellite System reflectometry (GNSS-R) uses ground-based signals of opportunity to retrieve sea levels at an intermediate spatial scale. Geodetic GNSS-R is based on the simultaneous reception of Line-of-Sight (LoS) and its coherent GNSS sea surface reflection (non-LOS) signals. The scope of this paper is to present geodetic GNSS-R applied to sea level altimetry. Signal-to-Noise Ratio (SNR) measurements from a Commercial Off-The-Shelf (COTS) geodetic-quality GNSS station at the Haiti Coast Guard Base in Port-au-Prince is used to retrieve sea levels in the International Terrestrial Reference Frame 2014 (ITRF2014). The GNSS-R sea levels are compared with those of the OTT Radar Level Sensor (RLS) installed vertically below the GNSS antenna. The Root-Mean-Square Error (RMSE) between the geodetic GNSS-R sea levels and OTT RLS records is 3.43 cm, with a correlation of 0.96. In addition, the complex differences between the OTT RLS records and 15-min GNSS-R sea levels using Global Positioning System (GPS) and Globalnaya Navigazionnaya Sputnikovaya Sistema (or Global Navigation Satellite System; GLONASS) signals for all the eight major tidal constituents are in mm-level agreement. Therefore, geodetic GNSS-R can be used as a complementary approach to the conventional method for sea level studies in a stable terrestrial reference frame. [less ▲] Detailed reference viewed: 112 (18 UL)![]() ; Francis, Olivier ![]() in Geodesy and Geodynamics (2021), 12(6), 451-458 Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia. In this paper, taking ... [more ▼] Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia. In this paper, taking advantage of a unique network of gravity tidal stations all over the Chinese mainland, we compare the observed and modeled tidal loading effects on the basis of the most recent global ocean tide models. The results show that the average efficiencies of the ocean tidal loading correction for O1, K1, M2 are 77%, 73% and 59%, respectively. The loading correction efficiencies using recent ocean tidal models are better than the 40 years old Schwiderskis model at coastal stations, but relative worse at stations far from ocean. [less ▲] Detailed reference viewed: 48 (0 UL)![]() ; ; et al Scientific Conference (2020) Detailed reference viewed: 37 (2 UL)![]() ; ; et al Scientific Conference (2020) Detailed reference viewed: 27 (0 UL)![]() ; ; et al Scientific Conference (2020) Detailed reference viewed: 31 (0 UL)![]() Tabibi, Sajad ![]() ![]() in Remote Sensing (2020), 12(21 3614), Global navigation satellite system reflectometry (GNSS-R) uses signals of opportunity in a bi-static configuration of L-band microwave radar to retrieve environmental variables such as water level. The ... [more ▼] Global navigation satellite system reflectometry (GNSS-R) uses signals of opportunity in a bi-static configuration of L-band microwave radar to retrieve environmental variables such as water level. The line-of-sight signal and its coherent surface reflection signal are not separate observables in geodetic GNSS-R. The temporally constructive and destructive oscillations in the recorded signal-to-noise ratio (SNR) observations can be used to retrieve water-surface levels at intermediate spatial scales that are proportional to the height of the GNSS antenna above the water surface. In this contribution, SNR observations are used to retrieve water levels at the Vianden Pumped Storage Plant (VPSP) in Luxembourg, where the water-surface level abruptly changes up to 17 m every 4-8 h to generate a peak current when the energy demand increases. The GNSS-R water level retrievals are corrected for the vertical velocity and acceleration of the water surface. The vertical velocity and acceleration corrections are important corrections that mitigate systematic errors in the estimated water level, especially for VPSP with such large water-surface changes. The root mean square error (RMSE) between the 10-min multi-GNSS water level time series and water level gauge records is 7.0 cm for a one-year period, with a 0.999 correlation coefficient. Our results demonstrate that GNSS-R can be used as a new complementary approach to study hurricanes or storm surges that cause abnormal rises of water levels. [less ▲] Detailed reference viewed: 152 (19 UL)![]() Tabibi, Sajad ![]() ![]() in Remote Sensing of Environment (2020), 248 We retrieve sea levels in polar regions via GNSS reflectometry (GNSS-R), using signal-to-noise ratio (SNR) observations from eight POLENET GNSS stations. Although geodetic-quality antennas are designed to ... [more ▼] We retrieve sea levels in polar regions via GNSS reflectometry (GNSS-R), using signal-to-noise ratio (SNR) observations from eight POLENET GNSS stations. Although geodetic-quality antennas are designed to boost the direct reception from GNSS satellites and to suppress indirect reflections from natural surfaces, the latter can still be used to estimate the sea level in a stable terrestrial reference frame. Here, typical GNSS-R retrieval methodology is improved in two ways, 1) constraining phase-shifts to yield more precise reflector heights and 2) employing an extended dynamic filter to account for the second-order height rate of change (vertical acceleration). We validate retrievals over a 4-year period at Palmer Station (Antarctica), where there is a co-located tide gauge (TG). Because ice contaminates the long-period tidal constituents, we focus on the main tidal species (daily and subdaily), by employing a deseasonalization filter. The difference between sub-hourly GNSS-R retrievals of the ocean surface and TG records has a root-mean-square error (RMSE) of 15.4 cm and a correlation of 0.903, while the tidal prediction has a RMSE of 1.9 cm and a correlation of 0.998. There is excellent millimetric agreement between the two sensors for most eight major tidal constituents, with the exception of luni-solar diurnal (K1), principal solar (S2), and luni-solar semidiurnal (K2) components, which are biased in GNSS-R due to the leakage of the GPS orbital period. We also compare the GNSS-R tidal constituents from seven additional POLENET sites, without co-located TG, to global and local ocean tide models. We find that the root-sum-square-error (RSSE) of eight major constituents varies between 26.0 cm and 56.9 cm for different models. Given that the agreement in tidal constituents between the TG and GNSS-R was better at Palmer Station, we conclude that assimilating the GNSS-R retrievals into tidal models would improve their accuracy in Antarctica and Greenland, provided that care is exercised to avoid the orbital period overtones and also sea ice. [less ▲] Detailed reference viewed: 213 (28 UL) |
||