References of "Frachet Bour, Audrey 50008566"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailIntegrated In Vitro and In Silico Modeling Delineates the Molecular Effects of a Synbiotic Regimen on Colorectal-Cancer-Derived Cells
Greenhalgh, Kacy UL; Ramiro Garcia, Javier UL; Heinken et al

in Cell Reports (2019), 27

By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations ... [more ▼]

By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations have prevented determining the potential combina- torial mechanisms of action of such regimens. We expanded our HuMiX gut-on-a-chip model to co-culture CRC-derived epithelial cells with a model probiotic under a simulated prebiotic regimen, and we integrated the multi-omic results with in silico metabolic modeling. In contrast to individual prebi- otic or probiotic treatments, the synbiotic regimen caused downregulation of genes involved in procarci- nogenic pathways and drug resistance, and reduced levels of the oncometabolite lactate. Distinct ratios of organic and short-chain fatty acids were produced during the simulated regimens. Treatment of primary CRC-derived cells with a molecular cocktail reflecting the synbiotic regimen attenuated self-renewal ca- pacity. Our integrated approach demonstrates the potential of modeling for rationally formulating synbi- otics-based treatments in the future. [less ▲]

Detailed reference viewed: 196 (23 UL)
Full Text
Peer Reviewed
See detailA microfluidics-based in vitro model of the gastrointestinal human-microbe interface.
Shah, Pranjul UL; Fritz, Joëlle UL; Glaab, Enrico UL et al

in Nature communications (2016), 7

Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit ... [more ▼]

Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human-microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human-microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host-microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease. [less ▲]

Detailed reference viewed: 1055 (79 UL)