References of "Felten, Paul 50001773"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity
Ullmann, Pit UL; Nurmik, Martin UL; Schmitz, Martine UL et al

in Cancer Letters (2019), 450

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including ... [more ▼]

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including colorectal carcinoma. Intratumoral hypoxia, i.e. reduced oxygen supply following uncontrolled proliferation of cancer cells, is thought to support TIC activity by inducing specific hypoxia-responsive mechanisms that are not yet entirely understood. Using previously established and fully characterized patient-derived TIC cultures, we could observe increased sphere and colony formation under hypoxic conditions. Mechanistically, microRNA (miRNA)-profiling experiments allowed us to identify miR-215 as one of the main hypoxia-induced miRNAs in primary colon TICs. Through stable overexpression of miR-215, followed by a set of functional in vitro and in vivo investigations, miR-215 was pinpointed as a negative feedback regulator, working against the TIC-promoting effects of hypoxia. Furthermore, we could single out LGR5, a bona fide marker of non-neoplastic intestinal stem cells, as a downstream target of hypoxia/miR-215 signaling. The strong tumor- and TIC-suppressor potential of miR-215 and the regulatory role of the hypoxia/miR-215/LGR5 axis may thus represent interesting points of attack for the development of innovative anti-CSC therapy approaches. [less ▲]

Detailed reference viewed: 74 (1 UL)
Full Text
Peer Reviewed
See detailKinase inhibitor library screening identifies synergistic drug combinations effective in sensitive and resistant melanoma cells
Margue, Christiane UL; Philippidou, Demetra UL; Kozar, Ines UL et al

in Journal of Experimental and Clinical Cancer Research (2019), 38(1),

Background: Melanoma is the most aggressive and deadly form of skin cancer with increasing case numbers worldwide. The development of inhibitors targeting mutated BRAF (found in around 60% of melanoma ... [more ▼]

Background: Melanoma is the most aggressive and deadly form of skin cancer with increasing case numbers worldwide. The development of inhibitors targeting mutated BRAF (found in around 60% of melanoma patients) has markedly improved overall survival of patients with late-stage tumors, even more so when combined with MEK inhibitors targeting the same signaling pathway. However, invariably patients become resistant to this targeted therapy resulting in rapid progression with treatment-refractory disease. The purpose of this study was the identification of new kinase inhibitors that do not lead to the development of resistance in combination with BRAF inhibitors (BRAFi), or that could be of clinical benefit as a 2nd line treatment for late-stage melanoma patients that have already developed resistance. Methods: We have screened a 274-compound kinase inhibitor library in 3 BRAF mutant melanoma cell lines (each one sensitive or made resistant to 2 distinct BRAFi). The screening results were validated by dose-response studies and confirmed the killing efficacies of many kinase inhibitors. Two different tools were applied to investigate and quantify potential synergistic effects of drug combinations: the Chou-Talalay method and the Synergyfinder application. In order to exclude that resistance to the new treatments might occur at later time points, synergistic combinations were administered to fluorescently labelled parental and resistant cells over a period of > 10 weeks. Results: Eight inhibitors targeting Wee1, Checkpoint kinase 1/2, Aurora kinase, MEK, Polo-like kinase, PI3K and Focal adhesion kinase killed melanoma cells synergistically when combined with a BRAFi. Additionally, combination of a Wee1 and Chk inhibitor showed synergistic killing effects not only on sensitive cell lines, but also on intrinsically BRAFi- and treatment induced-resistant melanoma cells. First in vivo studies confirmed these observations. Interestingly, continuous treatment with several of these drugs, alone or in combination, did not lead to emergence of resistance. Conclusions: Here, we have identified new, previously unexplored (in the framework of BRAFi resistance) inhibitors that have an effect not only on sensitive but also on BRAFi-resistant cells. These promising combinations together with the new immunotherapies could be an important step towards improved 1st and 2nd line treatments for late-stage melanoma patients. [less ▲]

Detailed reference viewed: 63 (6 UL)
Full Text
Peer Reviewed
See detailA new ALK isoform transported by extracellular vesicles confers drug resistance to melanoma cells
Cesi, Giulia; Philippidou, Demetra UL; Kozar, Ines UL et al

in Molecular Cancer (2018), (17:145),

Abstract BACKGROUND: Drug resistance remains an unsolved clinical issue in oncology. Despite promising initial responses obtained with BRAF and MEK kinase inhibitors, resistance to treatment develops ... [more ▼]

Abstract BACKGROUND: Drug resistance remains an unsolved clinical issue in oncology. Despite promising initial responses obtained with BRAF and MEK kinase inhibitors, resistance to treatment develops within months in virtually all melanoma patients. METHODS: Microarray analyses were performed in BRAF inhibitor-sensitive and resistant cell lines to identify changes in the transcriptome that might play a role in resistance. siRNA approaches and kinase inhibitors were used to assess the involvement of the identified Anaplastic Lymphoma Kinase (ALK) in drug resistance. The capability of extracellular vesicles (EVs) to transfer drug resistant properties was investigated in co-culture assays. RESULTS: Here, we report a new mechanism of acquired drug resistance involving the activation of a novel truncated form of ALK. Knock down or inhibition of ALK re-sensitised resistant cells to BRAF inhibition and induced apoptosis. Interestingly, truncated ALK was also secreted into EVs and we show that EVs were the vehicle for transferring drug resistance. CONCLUSIONS: To our knowledge, this is the first report demonstrating the functional involvement of EVs in melanoma drug resistance by transporting a truncated but functional form of ALK, able to activate the MAPK signalling pathway in target cells. Combined inhibition of ALK and BRAF dramatically reduced tumour growth in vivo. These findings make ALK a promising clinical target in melanoma patients. [less ▲]

Detailed reference viewed: 137 (27 UL)
Full Text
Peer Reviewed
See detailThe microRNA-371~373 cluster represses colon cancer initiation and metastatic colonization by inhibiting the TGFBR2/ID1 signaling axis.
Ullmann, Pit UL; Rodriguez, Fabien UL; Schmitz, Martine UL et al

in Cancer research (2018)

The vast majority of colorectal cancer (CRC)-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key ... [more ▼]

The vast majority of colorectal cancer (CRC)-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key prerequisite to improve future treatment options. With this aim, we took advantage of different CRC cell lines and recently established primary cultures enriched in colon cancer stem cells (CSCs) - also known as tumor-initiating cells (TICs) - to identify genes and microRNAs (miRNAs) with regulatory functions in CRC progression. We show here that metastasis-derived TICs display increased capacity for self-renewal, transforming growth factor beta (TGF-beta) signaling activity, and reduced expression of the miR-371~373 cluster compared to non-metastatic cultures. TGF-beta receptor 2 (TGFBR2) and aldehyde dehydrogenase A1 (ALDH1A1) were identified as important target genes of the miR-371~373 cluster. In addition, TGFBR2 repression, either by direct knockdown or indirectly via overexpression of the entire miR-371~373 cluster, decreased tumor-initiating potential of TICs. We observed significantly reduced in vitro self-renewal activity as well as lowered tumor-initiation and metastatic outgrowth capacity in vivo following stable overexpression of the miR-371~373 cluster in different colon TIC cultures. Inhibitor of DNA binding 1 (ID1) was affected by both TGFBR2 and miR-371~373 cluster alterations. Functional sphere and tumor formation as well as metastatic dissemination assays validated the link between miR-371~373 and ID1. Altogether, our results establish the miR-371~373/TGFBR2/ID1 signaling axis as a novel regulatory mechanism of TIC self-renewal and metastatic colonization. [less ▲]

Detailed reference viewed: 94 (10 UL)
Full Text
Peer Reviewed
See detailAlpha-Synuclein Proteins Promote Pro-Inflammatory Cascades in Microglia: Stronger Effects of the A53T Mutant.
Hoenen, Claire; Gustin, Audrey; Birck, Cindy et al

in PLoS ONE (2016)

Parkinson’s disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point ... [more ▼]

Parkinson’s disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point mutations of the gene encoding the α-synuclein protein cause inherited forms of PD. There are currently six known point mutations that result in familial PD. Oxidative stress and neuroinflammation have also been described as early events associated with dopaminergic neuronal degeneration in PD. Though it is known that microglia are activated by wild-type α-synuclein, little is known about its mutated forms and the signaling cascades responsible for this microglial activation. The present study was designed to investigate consequences of wild-type and mutant α-synuclein (A53T, A30P and E46K) exposure on microglial reactivity. Interestingly, we described that α-synuclein-induced microglial reactivity appeared to be peptide-dependent. Indeed, the A53T protein activated more strongly microglia than the wild-type α-synuclein and other mutants. This A53T-induced microglial reactivity mechanism was found to depend on phosphorylation mechanisms mediated by MAPKs and on successive NFkB/AP-1/Nrf2 pathways activation. These results suggest that the microgliosis intensity during PD might depend on the type of α-synuclein protein implicated. Indeed, mutated forms are more potent microglial stimulators than wild-type α-synuclein. Based on these data, anti-inflammatory and antioxidant therapeutic strategies may be valid in order to reduce microgliosis but also to subsequently slow down PD progression, especially in familial cases. [less ▲]

Detailed reference viewed: 78 (3 UL)
Full Text
Peer Reviewed
See detailNLRP3 Inflammasome Is Expressed and Functional in Mouse Brain Microglia but Not in Astrocytes.
Gustin, Audrey; Kirchmeyer, Mélanie UL; Koncina, Eric UL et al

in PLoS ONE (2015), 10(6),

Neuroinflammation is the local reaction of the brain to infection, trauma, toxic molecules or protein aggregates. The brain resident macrophages, microglia, are able to trigger an appropriate response ... [more ▼]

Neuroinflammation is the local reaction of the brain to infection, trauma, toxic molecules or protein aggregates. The brain resident macrophages, microglia, are able to trigger an appropriate response involving secretion of cytokines and chemokines, resulting in the activation of astrocytes and recruitment of peripheral immune cells. IL-1β plays an important role in this response; yet its production and mode of action in the brain are not fully understood and its precise implication in neurodegenerative diseases needs further characterization. Our results indicate that the capacity to form a functional NLRP3 inflammasome and secretion of IL-1β is limited to the microglial compartment in the mouse brain. We were not able to observe IL-1β secretion from astrocytes, nor do they express all NLRP3 inflammasome components. Microglia were able to produce IL-1β in response to different classical inflammasome activators, such as ATP, Nigericin or Alum. Similarly, microglia secreted IL-18 and IL-1α, two other inflammasome-linked pro-inflammatory factors. Cell stimulation with α-synuclein, a neurodegenerative disease-related peptide, did not result in the release of active IL-1β by microglia, despite a weak pro-inflammatory effect. Amyloid-β peptides were able to activate the NLRP3 inflammasome in microglia and IL-1β secretion occurred in a P2X7 receptor-independent manner. Thus microglia-dependent inflammasome activation can play an important role in the brain and especially in neuroinflammatory conditions. [less ▲]

Detailed reference viewed: 107 (14 UL)
Full Text
Peer Reviewed
See detailMicroglial activation depends on beta-amyloid conformation: role of the formylpeptide receptor 2
Heurtaux, Tony UL; Michelucci, Alessandro UL; Losciuto, Sophie UL et al

in Journal of Neurochemistry (2010), 114(2), 576-586

Alzheimer's disease (AD) is characterized by the presence of extracellular deposits referred to beta-amyloid (Abeta) complexes or senile plaques. Abeta peptide is firstly produced as monomers, readily ... [more ▼]

Alzheimer's disease (AD) is characterized by the presence of extracellular deposits referred to beta-amyloid (Abeta) complexes or senile plaques. Abeta peptide is firstly produced as monomers, readily aggregating to form multimeric complexes, of which the smallest aggregates are known to be the most neurotoxic. In AD patients, abundant reactive microglia migrate to and surround the Abeta plaques. Though it is well known that microglia are activated by Abeta, little is known about the peptide conformation and the signaling cascades responsible for this activation. In this study, we have stimulated murine microglia with different Abeta(1-42) forms, inducing an inflammatory state, which was peptide conformation-dependent. The lightest oligomeric forms induced a more violent inflammatory response, whereas the heaviest oligomers and the fibrillar conformation were less potent inducers. BocMLF, a formylpeptide chemotactic receptor 2 antagonist, decreased the oligomeric Abeta-induced inflammatory response. The Abeta-induced signal transduction was found to depend on phosphorylation mechanisms mediated by MAPKs and on activator protein 1/nuclear factor kappa-light-chain-enhancer of activated B cells pathways activation. These results suggest that the reactive microgliosis intensity during AD might depend on the disease progression and consequently on the Abeta conformation production. The recognition of Abeta by the formylpeptide chemotactic receptor 2 seems to be a starting point of the signaling cascade inducing an inflammatory state. [less ▲]

Detailed reference viewed: 151 (39 UL)