![]() ; ; et al in Brain (2023), 146(7), 27532765 Biallelic mutations in PINK1/PRKN cause recessive Parkinson’s disease. Given the established role of PINK1/Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA (mtDNA) integrity and ... [more ▼] Biallelic mutations in PINK1/PRKN cause recessive Parkinson’s disease. Given the established role of PINK1/Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA (mtDNA) integrity and inflammation as disease modifiers in carriers of mutations in these genes. MtDNA integrity was investigated in a large collection of biallelic (n = 84) and monoallelic (n = 170) carriers of PINK1/PRKN mutations, idiopathic Parkinson’s disease patients (n = 67) and controls (n = 90). In addition, we studied global gene expression and serum cytokine levels in a subset. Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mtDNA variant load (AUC = 0.83, CI:0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbor more heteroplasmic mtDNA variants in blood (p = 0.0006, Z = 3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in iPSC-derived (controls, n = 3; biallelic PRKN mutation carriers, n = 4) and postmortem (control, n = 1; biallelic PRKN mutation carrier, n = 1) midbrain neurons. Lastly, the heteroplasmic mtDNA variant load correlated with IL6 levels in PINK1/PRKN mutation carriers (r = 0.57, p = 0.0074). PINK1/PRKN mutations predispose individuals to mtDNA variant accumulation in a dose- and disease-dependent manner. [less ▲] Detailed reference viewed: 31 (6 UL)![]() ; ; et al in Movement Disorders (2023), 38(2), 286--303 BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a ... [more ▼] BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. OBJECTIVE: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. METHODS: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2 VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. RESULTS: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34\%) were indicated as not previously published. CONCLUSIONS: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. [less ▲] Detailed reference viewed: 34 (1 UL)![]() ; ; et al E-print/Working paper (2023) The objective of our study was to investigate the impact of the mitochondrial polygenic score (MGS) and lifestyle/environmental data on age at onset in LRRK2 p.Gly2019Ser parkinsonism (LRRK2-PD) and ... [more ▼] The objective of our study was to investigate the impact of the mitochondrial polygenic score (MGS) and lifestyle/environmental data on age at onset in LRRK2 p.Gly2019Ser parkinsonism (LRRK2-PD) and idiopathic Parkinson\textquoterights disease (iPD).In this study, we included N=486 patients with LRRK2-PD and N=9259 patients with iPD from AMP-PD, Fox Insight, and a Tunisian Arab-Berber founder population. Genotyping data was utilized to perform the MGS analysis, using 14 Single Nucleotide Polymorphisms (SNPs) from genes causally associated with mitochondrial function and PD risk. Additionally, lifestyle and environmental data were obtained from the PD risk factor questionnaire (PD-RFQ). Correlation analyses and linear regression models were used to assess the relationship between MGS, lifestyle/environment, and AAO.We observed that higher MGS was associated with earlier AAO in patients with LRRK2-PD (p=4.0\texttimes10-4, β=-0.18) but not in patients with iPD. A correlation between MGS and AAO was visibly stronger in European ancestry LRRK2-PD patients (p=0.01, r=-0.16) than in Tunisian Arab-Berber patients (p=0.44, r=-0.05). We found that the MGS interacted with coffee (p=0.03, β=-0.38) and caffeinated soda consumption (p=0.03, β=-0.37) in LRRK2-PD and with caffeine soda consumption (p=0.047, β=-0.22) and pesticide exposure (p=0.02, β=-0.37) in iPD. Thus, patients with a high MGS had an earlier AAO only if they consumed caffeine or were exposed to pesticides.The MGS related to mitochondrial function was associated with AAO in LRRK2-PD but not iPD with an ethnic-specific effect. Caffeine consumption or pesticide exposure interacted with MGS to predict PD AAO. Our study suggests gene-environment interactions as modifiers of AAO in LRRK2-PD.Competing Interest StatementCK serves as a medical advisor to Centogene and Retromer Therapeutics and received speaking honoraria from Desitin. The remaining authors declare no conflict of interest.Funding StatementThis project was supported by the DFG RU ProtectMove (DFG FOR2488), the Michael J. Fox Foundation (MJFF-021227 \& MJFF-019271), and the Else Kroener-Fresenius-Stiftung.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Ethical permission was given by the Ethical Committee of the Institut National de Neurologie and certified by the Ministry of Health, Tunisia.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData sharing is not applicable to this article as no new data were created or analysed in this study. Data used in the preparation of this manuscript were obtained from the Fox Insight database (https://foxinsight-info.michaeljfox.org/insight/explore/insight.jsp) on 18/10/2020. For up-to-date information on the study, visit https://foxinsight-info.michaeljfox.org/insight/explore/insight.jsp. Data used in the preparation of this article were obtained from the Accelerating Medicine Partnership (AMP) Parkinson\textquoterights Disease (AMP PD) Knowledge Platform. For up-to-date information on the study, visit https://www.amp-pd.org. [less ▲] Detailed reference viewed: 73 (0 UL)![]() ; ; et al E-print/Working paper (2022) Biallelic mutations in PINK1 and PRKN cause recessively inherited Parkinson's disease (PD). Though some studies suggest that PINK1/PRKN monoallelic mutations may not contribute to risk, deep phenotyping ... [more ▼] Biallelic mutations in PINK1 and PRKN cause recessively inherited Parkinson's disease (PD). Though some studies suggest that PINK1/PRKN monoallelic mutations may not contribute to risk, deep phenotyping assessment showed that PINK1 or PRKN monoallelic pathogenic variants were at a significantly higher rate in PD compared to controls. Given the established role of PINK1 and Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA (mtDNA) integrity and inflammation as potential disease modifiers in carriers of mutations in these genes. MtDNA integrity, global gene expression and serum cytokine levels were investigated in a large collection of biallelic (n=84) and monoallelic (n=170) carriers of PINK1/PRKN mutations, iPD patients (n=67) and controls (n=90). Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mtDNA variant load (AUC=0.83, CI:0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbor more heteroplasmic mtDNA variants in blood (p=0.0006, Z=3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in iPSC-derived and postmortem midbrain neurons from biallelic PRKN-PD patients. Lastly, the heteroplasmic mtDNA variant load was found to correlate with IL6 levels in PINK1/PRKN mutation carriers (r=0.57, p=0.0074). PINK1/PRKN mutations predispose individuals to mtDNA variant accumulation in a dose- and disease-dependent manner. MtDNA variant load over time is a potential marker of disease manifestation in PINK1/PRKN mutation carriers.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThe authors wish to thank the many patients and their families who volunteered, and the efforts of the many clinical teams involved. Funding has been obtained from the German Research Foundation (ProtectMove; FOR 2488, GR 3731/5-1; SE 2608/2-1; KO 2250/7-1), the Luxembourg National Research Fund in the ATTRACT (Model-IPD, FNR9631103), NCER-PD (FNR11264123) and INTER programmes (ProtectMove, FNR11250962; MiRisk-PD, C17/BM/11676395, NB 4328/2-1), the BMBF (MitoPD), the Hermann and Lilly Schilling Foundation, the European Community (SysMedPD), the Canadian Institutes of Health Research (CIHR), Peter and Traudl Engelhorn Foundation. Initial studies in Tunisia on familial parkinsonism were in collaboration with Lefkos Middleton, Rachel Gibson, and the GlaxoSmithKline PD Programme Team (2002-2005). We would like to thank Dr Helen Tuppen from the Welcome Trust Centre for Mitochondrial Research, Newcastle University, UK for providing us with the plasmid p7D1. Moreover, this project was supported by the high throughput/high content screening platform and HPC facility at the Luxembourg Centre for Systems Biomedicine, and the University of Luxembourg.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:University of Lubeck Ethics CommitteeI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the present study are available upon reasonable request to the authors [less ▲] Detailed reference viewed: 104 (6 UL)![]() ; ; et al in Frontiers in Neurology (2021), 12 Parkinson's disease (PD) is the fastest growing neurological disorder worldwide, taking into account age-standardized rates for prevalence, disability and deaths (1). PD is characterized by a clinical ... [more ▼] Parkinson's disease (PD) is the fastest growing neurological disorder worldwide, taking into account age-standardized rates for prevalence, disability and deaths (1). PD is characterized by a clinical symptomatology involving both motor and non-motor symptoms. According to the Global Burden of Disease study (2018), the global burden of this disorder has more than doubled over the past two decades from 2.5 million patients in 1990 to 6.1 million patients in 2016 (2). In this editorial and eBook, we highlight the research done on PD by members of a global consortium known as the Genetic Epidemiology of Parkinson's disease (GEoPD) Consortium. We begin the editorial by providing a brief history of how GEoPD was started and how it has subsequently developed into an international endeavor. We then briefly summarize the completed and ongoing projects, and conclude with the future vision of this unique consortium. [less ▲] Detailed reference viewed: 25 (1 UL)![]() Ouzren, Nassima ![]() ![]() ![]() in Annals of Neurology (2019), 86(2), 324-326 Detailed reference viewed: 185 (17 UL)![]() ; ; et al in Neurobiology of Aging (2017), 49 A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed ... [more ▼] A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed interaction between LRRK2 and PARK16 variants in modifying PD risk using a large multicenter series of PD patients (7715) and controls (8261) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Our data does not support a strong direct interaction between LRRK2 and PARK16 variants; however, given the role of retromer and lysosomal pathways in PD, further studies are warranted. [less ▲] Detailed reference viewed: 162 (4 UL)![]() ; ; et al in Neurobiology of Aging (2014), 35(1), 2665-14 The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H ... [more ▼] The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined 4 SNCA variants (rs181489, rs356219, rs11931074, and rs2583988), the MAPT H1-haplotype-defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (n = 10,322) and Asian (n = 2289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all p >/= 0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with Parkinson's disease is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations. [less ▲] Detailed reference viewed: 193 (7 UL)![]() ; ; et al in Movement Disorders (2013), 28(12), 1740-4 BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease ... [more ▼] BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late-onset sporadic disorders like Parkinson's disease. METHODS: The Genetic Epidemiology of Parkinson's Disease Consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. RESULTS: Herein, we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) nominated in the original publication. Simple population allele frequencies not only can provide insight into the clinical relevance of specific variants but also can help genetically define patient groups. CONCLUSIONS: Establishing individual patient-based genomic susceptibility profiles that incorporate both risk factors and protective factors will determine future diagnostic and treatment strategies. [less ▲] Detailed reference viewed: 126 (1 UL)![]() ; ; et al in Lancet Neurology (2011), 10(10), 898-908 BACKGROUND: Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in ... [more ▼] BACKGROUND: Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in relation to risk of Parkinson's disease (PD) has not been assessed systematically. We therefore assessed the frequency of LRRK2 exonic variants in individuals with and without PD, to investigate the role of the variants in PD susceptibility. METHODS: LRRK2 was genotyped in patients with PD and controls from three series (white, Asian, and Arab-Berber) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Genotyping was done for exonic variants of LRRK2 that were identified through searches of literature and the personal communications of consortium members. Associations with PD were assessed by use of logistic regression models. For variants that had a minor allele frequency of 0.5% or greater, single variant associations were assessed, whereas for rarer variants information was collapsed across variants. FINDINGS: 121 exonic LRRK2 variants were assessed in 15 540 individuals: 6995 white patients with PD and 5595 controls, 1376 Asian patients and 962 controls, and 240 Arab-Berber patients and 372 controls. After exclusion of carriers of known pathogenic mutations, new independent risk associations were identified for polymorphic variants in white individuals (M1646T, odds ratio 1.43, 95% CI 1.15-1.78; p=0.0012) and Asian individuals (A419V, 2.27, 1.35-3.83; p=0.0011). A protective haplotype (N551K-R1398H-K1423K) was noted at a frequency greater than 5% in the white and Asian series, with a similar finding in the Arab-Berber series (combined odds ratio 0.82, 0.72-0.94; p=0.0043). Of the two previously reported Asian risk variants, G2385R was associated with disease (1.73, 1.20-2.49; p=0.0026), but no association was noted for R1628P (0.62, 0.36-1.07; p=0.087). In the Arab-Berber series, Y2189C showed potential evidence of risk association with PD (4.48, 1.33-15.09; p=0.012). INTERPRETATION: The results for LRRK2 show that several rare and common genetic variants in the same gene can have independent effects on disease risk. LRRK2, and the pathway in which it functions, is important in the cause and pathogenesis of PD in a greater proportion of patients with this disease than previously believed. These results will help discriminate those patients who will benefit most from therapies targeted at LRRK2 pathogenic activity. FUNDING: Michael J Fox Foundation and National Institutes of Health. [less ▲] Detailed reference viewed: 142 (1 UL)![]() ; ; et al in Annals of neurology (2011), 69(5), 778-92 OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta ... [more ▼] OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium. METHODS: Participants of Caucasian ancestry were genotyped for a total of 4 SNCA (rs2583988, rs181489, rs356219, rs11931074) and 2 MAPT (rs1052553, rs242557) single nucleotide polymorphism (SNPs). Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied on both a multiplicative and an additive scale, and using a case-control and case-only approach. RESULTS: Fifteen GEO-PD sites contributed a total of 5,302 cases and 4,161 controls. All 4 SNCA SNPs and the MAPT H1-haplotype-defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 3' end of the gene. There was no evidence of statistical interaction between any of the 4 SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale. INTERPRETATION: This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these 2 loci is consistent with independent effects of the genes without additional interacting effects. [less ▲] Detailed reference viewed: 154 (0 UL)![]() ![]() ; ; et al in JAMA: Journal of the American Medical Association (2006), 296(6), 661-70 CONTEXT: Identification and replication of susceptibility genes for Parkinson disease at the population level have been hampered by small studies with potential biases. Alpha-synuclein (SNCA) has been one ... [more ▼] CONTEXT: Identification and replication of susceptibility genes for Parkinson disease at the population level have been hampered by small studies with potential biases. Alpha-synuclein (SNCA) has been one of the most promising susceptibility genes, but large-scale studies have been lacking. OBJECTIVE: To determine whether allele-length variability in the dinucleotide repeat sequence (REP1) of the SNCA gene promoter is associated with Parkinson disease susceptibility, whether SNCA promoter haplotypes are associated with Parkinson disease, and whether REP1 variability modifies age at onset. DESIGN, SETTING, AND PARTICIPANTS: We performed a collaborative analysis of individual-level data on SNCA REP1 and flanking markers in patients with Parkinson disease and controls. Study site recruitment, data collection, and analyses were performed between April 5, 2004, and December 31, 2005. Eighteen participating sites of a global genetics consortium provided clinical data. Genotyping was performed for SNCA REP1, -770, and -116 markers at individual sites; however, each site also provided 20 DNA samples for regenotyping centrally. MAIN OUTCOME MEASURES: Measures included estimations of Hardy-Weinberg equilibrium in controls; a test of heterogeneity; analyses for association of single variants or haplotypes; and survival analyses for age at onset. RESULTS: Of the 18 sites, 11 met stringent criteria for concordance with Hardy-Weinberg equilibrium and low genotyping error rate. These 11 sites provided complete data for 2692 cases and 2652 controls. There was no heterogeneity across studies (P>.60). The SNCA REP1 alleles differed in frequency for cases and controls (P<.001). Genotypes defined by the 263 base-pair allele were associated with Parkinson disease (odds ratio, 1.43; 95% confidence interval, 1.22-1.69; P<.001 for trend). Multilocus haplotypes differed in frequency for cases and controls (global score statistic, P<.001). Two-loci haplotypes were associated with Parkinson disease only when they included REP1 as one of the loci. However, genotypes defined by REP1 alleles did not modify age at onset (P = .55). CONCLUSION: This large-scale collaborative analysis demonstrates that SNCA REP1 allele-length variability is associated with an increased risk of Parkinson disease. [less ▲] Detailed reference viewed: 110 (1 UL) |
||