References of "Etheridge, Alton"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe RNA Complement of Outer Membrane Vesicles From Salmonella enterica Serovar Typhimurium Under Distinct Culture Conditions
Malabirade, Antoine UL; Habier, Janine UL; Heintz-Buschart, Anna et al

in Frontiers in Microbiology (2018), 9

Bacterial outer membrane vesicles (OMVs), as well as OMV-associated small RNAs, have been demonstrated to play a role in host–pathogen interactions. The presence of larger RNA transcripts in OMVs has been ... [more ▼]

Bacterial outer membrane vesicles (OMVs), as well as OMV-associated small RNAs, have been demonstrated to play a role in host–pathogen interactions. The presence of larger RNA transcripts in OMVs has been less studied and their potential role in host–pathogen interactions remains largely unknown. Here we analyze RNA from OMVs secreted by Salmonella enterica serovar Typhimurium (S. Typhimurium) cultured under different conditions, which mimic host–pathogen interactions. S. Typhimurium was grown to exponential and stationary growth phases in minimal growth control medium (phosphate-carbon-nitrogen, PCN), as well as in acidic and phosphate-depleted PCN, comparable to the macrophage environment and inducing therefore the expression of Salmonella pathogenicity island 2 (SPI-2) genes. Moreover, Salmonella pathogenicity island 1 (SPI-1), which is required for virulence during the intestinal phase of infection, was induced by culturing S. Typhimurium to the stationary phase in Lysogeny Broth (LB). For each condition, we identified OMV-associated RNAs that are enriched in the extracellular environment relative to the intracellular space. All RNA classes could be observed, but a vast majority of rRNA was exported in all conditions in variable proportions with a notable decrease in LB SPI-1 inducing media. Several mRNAs and ncRNAs were specifically enriched in/on OMVs dependent on the growth conditions. Important to note is that some RNAs showed identical read coverage profiles intracellularly and extracellularly, whereas distinct coverage patterns were observed for other transcripts, suggesting a specific processing or degradation. Moreover, PCR experiments confirmed that distinct RNAs were present in or on OMVs as full-length transcripts (IsrB-1/2; IsrA; ffs; SsrS; CsrC; pSLT035; 10Sa; rnpB; STM0277; sseB; STM0972; STM2606), whereas others seemed to be rather present in a processed or degraded form. Finally, we show by a digestion protection assay that OMVs are able to prevent enzymatic degradation of given full-length transcripts (SsrS, CsrC, 10Sa, and rnpB). In summary, we show that OMV-associated RNA is clearly different in distinct culture conditions and that at least a fraction of the extracellular RNA is associated as a full-length transcripts with OMVs, indicating that some RNAs are protected by OMVs and thereby leaving open the possibility that those might be functionally active. [less ▲]

Detailed reference viewed: 146 (13 UL)
Full Text
Peer Reviewed
See detailSmall RNA profiling of low biomass samples: identification and removal of contaminants
Heintz-Buschart, Anna; Yusuf, Dilmurat; Kaysen, Anne UL et al

in BMC Biology (2018), 16(52),

Background: Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and ... [more ▼]

Background: Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. DNA contamination has been previously reported, however contamination with RNA is usually considered to be unlikely due to its inherent instability. Small RNAs (sRNAs) identified in tissues and bodily fluids such as blood plasma, have implications for physiology and pathology, and therefore the potential to act as disease biomarkers. Thus, the possibility for RNA contaminants demands a careful evaluation. Results: Here we report the presence of small RNA contaminants in widely used microRNA extraction kits and propose an approach for their depletion. We sequenced sRNAs extracted from human plasma samples and detected important levels of non-human (exogenous) sequences whose source could be traced to the microRNA extraction columns through a careful qPCR-based analysis of several laboratory reagents. Furthermore, we also detected the presence of artefactual sequences related to these contaminants in a range of published datasets, arguing for a re-evaluation of reports suggesting the presence of exogenous RNAs of microbial and dietary origins in blood plasma. To avoid artefacts in future experiments, we also devise several protocols of contaminant RNAs, define minimal amounts of starting material for artefact-free analyses, and confirm the reduction of contaminant levels for identification of bona fide sequences using ‘ultra-clean’ extraction kits. Conclusion: This is the first report of the presence of RNA molecules as contaminants in RNA extraction kits. The described protocols should be applied in the future to avoid confounding sRNA studies. [less ▲]

Detailed reference viewed: 190 (23 UL)
Full Text
See detailIsolation of nucleic acids from low biomass samples: detection and removal of sRNA contaminants
Heintz-Buschart, Anna; Yusuf, Dilmurat; Kaysen, Anne UL et al

E-print/Working paper (2017)

Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. Due ... [more ▼]

Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. Due to its inherent instability, contamination with RNA is usually considered to be unlikely. Here we report the presence of small RNA (sRNA) contaminants in widely used microRNA extraction kits and means for their depletion. Sequencing of sRNAs extracted from human plasma samples was performed and significant levels of non-human (exogenous) sequences were detected. The source of the most abundant of these sequences could be traced to the microRNA extraction columns by qPCR-based analysis of laboratory reagents. The presence of artefactual sequences originating from the confirmed contaminants were furthermore replicated in a range of published datasets. To avoid artefacts in future experiments, several protocols for the removal of the contaminants were elaborated, minimal amounts of starting material for artefact-free analyses were defined, and the reduction of contaminant levels for identification of bona fide sequences using 'ultra-clean' extraction kits was confirmed. In conclusion, this is the first report of the presence of RNA molecules as contaminants in laboratory reagents. The described protocols should be applied in the future to avoid confounding sRNA studies. [less ▲]

Detailed reference viewed: 153 (2 UL)
Full Text
Peer Reviewed
See detailSources and Functions of Extracellular Small RNAs in Human Circulation.
Fritz, Joëlle UL; Heintz, Anna UL; Ghosal, Anubrata et al

in Annual review of nutrition (2016)

Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are ... [more ▼]

Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review. Expected final online publication date for the Annual Review of Nutrition Volume 36 is July 17, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates. [less ▲]

Detailed reference viewed: 192 (20 UL)