References of "Ellis, Colin A."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModeling seizures in the Human Phenotype Ontology according to contemporary ILAE concepts makes big phenotypic data tractable
Lewis-Smith, David; Galer, Peter D.; Balagura, Ganna et al

in Epilepsia (2021), n/a(n/a),

Abstract Objective The clinical features of epilepsy determine how it is defined, which in turn guides management. Therefore, consideration of the fundamental clinical entities that comprise an epilepsy ... [more ▼]

Abstract Objective The clinical features of epilepsy determine how it is defined, which in turn guides management. Therefore, consideration of the fundamental clinical entities that comprise an epilepsy is essential in the study of causes, trajectories, and treatment responses. The Human Phenotype Ontology (HPO) is used widely in clinical and research genetics for concise communication and modeling of clinical features, allowing extracted data to be harmonized using logical inference. We sought to redesign the HPO seizure subontology to improve its consistency with current epileptological concepts, supporting the use of large clinical data sets in high-throughput clinical and research genomics. Methods We created a new HPO seizure subontology based on the 2017 International League Against Epilepsy (ILAE) Operational Classification of Seizure Types, and integrated concepts of status epilepticus, febrile, reflex, and neonatal seizures at different levels of detail. We compared the HPO seizure subontology prior to, and following, our revision, according to the information that could be inferred about the seizures of 791 individuals from three independent cohorts: 2 previously published and 150 newly recruited individuals. Each cohort's data were provided in a different format and harmonized using the two versions of the HPO. Results The new seizure subontology increased the number of descriptive concepts for seizures 5-fold. The number of seizure descriptors that could be annotated to the cohort increased by 40 and the total amount of information about individuals' seizures increased by 38\%. The most important qualitative difference was the relationship of focal to bilateral tonic-clonic seizure to generalized-onset and focal-onset seizures. Significance We have generated a detailed contemporary conceptual map for harmonization of clinical seizure data, implemented in the official 2020-12-07 HPO release and freely available at hpo.jax.org. This will help to overcome the phenotypic bottleneck in genomics, facilitate reuse of valuable data, and ultimately improve diagnostics and precision treatment of the epilepsies. [less ▲]

Detailed reference viewed: 41 (0 UL)
Full Text
Peer Reviewed
See detailSub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
Motelow, Joshua E.; Povysil, Gundula; Dhindsa, Ryan S. et al

in The American Journal of Human Genetics (2021)

Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we ... [more ▼]

Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy. [less ▲]

Detailed reference viewed: 45 (2 UL)
Full Text
Peer Reviewed
See detailSemantic Similarity Analysis Reveals Robust Gene-Disease Relationships in Developmental and Epileptic Encephalopathies
Galer, Peter D.; Ganesan, Shiva; Lewis-Smith, David et al

in The American Journal of Human Genetics (2020), 107(4), 683-697

Summary 2.1 × 10−5) and “focal clonic seizures” (HP: 0002266; p = 8.9 × 10−6), STXBP1 with “absent speech” (HP: 0001344; p = 1.3 × 10−11), and SLC6A1 with “EEG with generalized slow activity” (HP: 0010845 ... [more ▼]

Summary 2.1 × 10−5) and “focal clonic seizures” (HP: 0002266; p = 8.9 × 10−6), STXBP1 with “absent speech” (HP: 0001344; p = 1.3 × 10−11), and SLC6A1 with “EEG with generalized slow activity” (HP: 0010845; p = 0.018). Of 41 genes with de novo variants in two or more individuals, 11 genes showed significant phenotypic similarity, including SCN1A (n = 16, p < 0.0001), STXBP1 (n = 14, p = 0.0021), and KCNB1 (n = 6, p = 0.011). Including genetic and phenotypic data of control subjects increased phenotypic similarity for all genetic etiologies, whereas the probability of observing de novo variants decreased, emphasizing the conceptual differences between semantic similarity analysis and approaches based on the expected number of de novo events. We demonstrate that HPO-based phenotype analysis captures unique profiles for distinct genetic etiologies, reflecting the breadth of the phenotypic spectrum in genetic epilepsies. Semantic similarity can be used to generate statistical evidence for disease causation analogous to the traditional approach of primarily defining disease entities through similar clinical features. [less ▲]

Detailed reference viewed: 34 (0 UL)
Full Text
Peer Reviewed
See detailUltra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals
Feng, Yen-Chen Anne; Howrigan, Daniel P.; Abbott, Liam E. et al

in American Journal of Human Genetics (2019)

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared ... [more ▼]

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology. [less ▲]

Detailed reference viewed: 139 (7 UL)
Full Text
Peer Reviewed
See detailA Recurrent Missense Variant in AP2M1 Impairs Clathrin-Mediated Endocytosis and Causes Developmental and Epileptic Encephalopathy.
Helbig, Ingo; Lopez-Hernandez, Tania; Shor, Oded et al

in American journal of human genetics (2019)

The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of ... [more ▼]

The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of individuals. To explore whether statistical support for genetic etiologies can be generated on the basis of phenotypic features, we analyzed whole-exome sequencing data and phenotypic similarities by using Human Phenotype Ontology (HPO) in 314 individuals with DEEs. We identified a de novo c.508C>T (p.Arg170Trp) variant in AP2M1 in two individuals with a phenotypic similarity that was higher than expected by chance (p = 0.003) and a phenotype related to epilepsy with myoclonic-atonic seizures. We subsequently found the same de novo variant in two individuals with neurodevelopmental disorders and generalized epilepsy in a cohort of 2,310 individuals who underwent diagnostic whole-exome sequencing. AP2M1 encodes the mu-subunit of the adaptor protein complex 2 (AP-2), which is involved in clathrin-mediated endocytosis (CME) and synaptic vesicle recycling. Modeling of protein dynamics indicated that the p.Arg170Trp variant impairs the conformational activation and thermodynamic entropy of the AP-2 complex. Functional complementation of both the mu-subunit carrying the p.Arg170Trp variant in human cells and astrocytes derived from AP-2mu conditional knockout mice revealed a significant impairment of CME of transferrin. In contrast, stability, expression levels, membrane recruitment, and localization were not impaired, suggesting a functional alteration of the AP-2 complex as the underlying disease mechanism. We establish a recurrent pathogenic variant in AP2M1 as a cause of DEEs with distinct phenotypic features, and we implicate dysfunction of the early steps of endocytosis as a disease mechanism in epilepsy. [less ▲]

Detailed reference viewed: 125 (0 UL)