References of "Dupont, Briag Gerard Benjamin 50035484"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFast and Flexible Elliptic Curve Cryptography for Dining Cryptographers Networks
Dupont, Briag Gerard Benjamin UL; Franck, Christian UL; Groszschädl, Johann UL

in Bouzefrane, Samia; Laurent, Maryline; Boumerdassi, Selma (Eds.) et al Mobile, Secure, and Programmable Networking, 6th International Conference, MSPN 2020, Paris, France, October 28–29, 2020, Revised Selected Papers (2020, October)

A Dining Cryptographers network (DCnet for short) allows anonymous communication with sender and receiver untraceability even if an adversary has unlimited access to the connection metadata of the network ... [more ▼]

A Dining Cryptographers network (DCnet for short) allows anonymous communication with sender and receiver untraceability even if an adversary has unlimited access to the connection metadata of the network. Originally introduced by David Chaum in the 1980s, DCnets were for a long time considered not practical for real-world applications because of the tremendous communication and computation overhead they introduce. However, technological innovations such as 5G networks and extremely powerful 64-bit processors make a good case to reassess the practicality of DCnets. In addition, recent advances in elliptic-curve based commitment schemes and Zero-Knowledge Proofs (ZKPs) provide a great opportunity to reduce the computational cost of modern DCnets that are able to detect malicious behavior of communicating parties. In this paper we introduce X64ECC, a self-contained library for Elliptic Curve Cryptography (ECC) developed from scratch to support all the public-key operations needed by modern DCnets: key exchange, digital signatures, Pedersen commitments, and ZKPs. X64ECC is written in C and uses compiler intrinsics to speed up performance-critical arithmetic operations. It is highly scalable and works with Montgomery curves and twisted Edwards curves of different cryptographic strength. Despite its high scalability and portability, X64ECC is able to compute a fixed-base scalar multiplication on a twisted Edwards curve over a 255-bit prime field in about 145,000 clock cycles on a modern Intel X64 processor. All cryptosystems can be adapted on-the-fly (i.e. without recompilation) to implement DCnets with arbitrary message sizes, and tradeoffs between the cryptographic strength and throughput of a DCnet are possible. [less ▲]

Detailed reference viewed: 34 (4 UL)