References of "Duga, Stefano"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease.
Boussaad, Ibrahim UL; Obermaier, Carolin D.; Hanss, Zoé et al

in Science translational medicine (2020), 12(560),

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic ... [more ▼]

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD. [less ▲]

Detailed reference viewed: 155 (10 UL)
Full Text
Peer Reviewed
See detailThe GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p.
Straniero, Letizia; Rimoldi, Valeria; Samarani, Maura et al

in Scientific reports (2017), 7(1), 12702

Mutations in the GBA gene, encoding lysosomal glucocerebrosidase, represent the major predisposing factor for Parkinson's disease (PD), and modulation of the glucocerebrosidase activity is an emerging PD ... [more ▼]

Mutations in the GBA gene, encoding lysosomal glucocerebrosidase, represent the major predisposing factor for Parkinson's disease (PD), and modulation of the glucocerebrosidase activity is an emerging PD therapy. However, little is known about mechanisms regulating GBA expression. We explored the existence of a regulatory network involving GBA, its expressed pseudogene GBAP1, and microRNAs. The high level of sequence identity between GBA and GBAP1 makes the pseudogene a promising competing-endogenous RNA (ceRNA), functioning as a microRNA sponge. After selecting microRNAs potentially targeting both transcripts, we demonstrated that miR-22-3p binds to and down-regulates GBA and GBAP1, and decreases their endogenous mRNA levels up to 70%. Moreover, over-expression of GBAP1 3'-untranslated region was able to sequester miR-22-3p, thus increasing GBA mRNA and glucocerebrosidase levels. The characterization of GBAP1 splicing identified multiple out-of-frame isoforms down-regulated by the nonsense-mediated mRNA decay, suggesting that GBAP1 levels and, accordingly, its ceRNA effect, are significantly modulated by this degradation process. Using skin-derived induced pluripotent stem cells of PD patients with GBA mutations and controls, we observed a significant GBA up-regulation during dopaminergic differentiation, paralleled by down-regulation of miR-22-3p. Our results describe the first microRNA controlling GBA and suggest that the GBAP1 non-coding RNA functions as a GBA ceRNA. [less ▲]

Detailed reference viewed: 96 (2 UL)