References of "Dressler, Falko"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWideband OFDM-based Communications in Bus Topology as a Key Enabler for Industry 4.0 Networks
Gonzalez Rios, Jorge Luis UL; Torres Gómez, Jorge; Sharma, Rajesh Kumar et al

in IEEE Access (2021), 9

The Industry 4.0 paradigm conceives a cyber-physical supporting framework for the manufacturing processes in smart factories. In this context, solutions concerning the wired communications at the field ... [more ▼]

The Industry 4.0 paradigm conceives a cyber-physical supporting framework for the manufacturing processes in smart factories. In this context, solutions concerning the wired communications at the field-level have been reported which utilize either fieldbuses, which exhibit a huge distance range but a reduced data rate in a bus topology, or Ethernet-based technologies, which provide an increased data rate but reduced distance in a ring topology. To overcome this shortage, we propose the use of orthogonal frequency division multiplexing (OFDM) to significantly increase the achievable data rates over large distances in industrial bus systems. Also, we establish a novel methodology to compute the signal-to-noise ratio between arbitrary pairs of nodes, which in turn allows to compute the communication capacity. Our wideband system was validated by connecting up to 32 nodes in the distance range 100 m–1 km. Compared to fieldbuses, the results of the proposal exhibit an amazing improvement in data rate of about fifty times for 100m distance and more than ten times for 0.5 km. Moreover, with respect to Ethernet-based solutions, the results show a relevant improvement in the data rate of around five times for 100 m distance, but Ethernet-based systems cannot go beyond this distance, to which our proposal is not limited. [less ▲]

Detailed reference viewed: 79 (11 UL)
Full Text
Peer Reviewed
See detailDuplicate Suppression for Efficient Floating Car Data Collection in Heterogeneous LTE-DSRC Vehicular Networks
Turcanu, Ion UL; Klingler, Florian; Sommer, Christoph et al

in Computer Communications (2018), 123

Collecting data from a large number of agents scattered over a region of interest is becoming an increasingly appealing paradigm to feed big data archives that lay the ground for a vast array of ... [more ▼]

Collecting data from a large number of agents scattered over a region of interest is becoming an increasingly appealing paradigm to feed big data archives that lay the ground for a vast array of applications. Vehicular Floating Car Data (FCD) collection is a major representative of this paradigm. Massive data collection from floating vehicles is the key to Intelligent Transportation Systems. We address the design and performance evaluation of a data collection protocol for the use case of periodic data collection. We target robustness, optimizing the amount of data and the value of the collection period, keeping in mind the goals of autonomous node operation and minimal coordination effort. From a system point of view, we believe that best solutions should jointly exploit the Long Term Evolution (LTE) cellular access network and the Dedicated Short-Range Communication (DSRC) based Vehicular Ad Hoc Network (VANET). Through a detailed comparative analysis, we show that such a hybrid approach offers superior performance, especially as for offloading the cellular radio access. A lightweight signaling procedure is designed, based on the DSRC VANET, which is able to avoid most of the duplicated data records, even if a distributed operation approach is pursued. The impact of the proposed protocol on the VANET load is evaluated and proved to be quite small, so that it does not interfere with other VANET-specific messages. [less ▲]

Detailed reference viewed: 201 (15 UL)
Full Text
Peer Reviewed
See detailPick the Right Guy: CQI-Based LTE Forwarder Selection in VANETs
Turcanu, Ion UL; Sommer, Christoph; Baiocchi, Andrea et al

in 8th IEEE Vehicular Networking Conference (VNC 2016) (2016, December)

Periodical collection of data from vehicles inside a target area is of interest for many applications in the context of Intelligent Transportation Systems (ITS). Long Term Evolution (LTE) has been ... [more ▼]

Periodical collection of data from vehicles inside a target area is of interest for many applications in the context of Intelligent Transportation Systems (ITS). Long Term Evolution (LTE) has been identified as a good candidate technology for supporting such type of applications - particularly for the non-safety domain. However, a high number of vehicles intermittently reporting their information via LTE can introduce a very high load on the LTE access network. In this context, the use of heterogeneous networking technologies can yield significant offloading of LTE - here, WLAN and Dedicated Short-Range Communication (DSRC) technology can support local data aggregation. In this paper, we propose an on-the-fly distributed clustering algorithm that uses both LTE and DSRC networks in the forwarder selection process. Our results clearly indicate that it is crucial to consider parameters drawn from both networking platforms for selecting the right forwarders. In particular, we show for the first time that relying on the Channel Quality Indicator (CQI) has a substantial impact. We demonstrate that our solution is able to significantly reduce the LTE channel utilization with respect to other state of the art approaches. [less ▲]

Detailed reference viewed: 136 (5 UL)