References of "Dongsun, Kim"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA critical review on the evaluation of automated program repair systems
Kui, Liu; Li, Li; Koyuncu, Anil UL et al

in Journal of Systems and Software (2021)

Detailed reference viewed: 97 (4 UL)
Full Text
Peer Reviewed
See detailAVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations
Liu, Kui UL; Koyuncu, Anil UL; Dongsun, Kim et al

in The 26th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER-2019) (2019, February 24)

Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained ... [more ▼]

Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained with mutation operators through genetic programming. The performance of pattern-based APR systems, however, depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a reliable set of bug fixes in repositories can be challenging. In this paper, we propose to investigate the possibility in an APR scenario of leveraging code changes that address violations by static bug detection tools. To that end, we build the AVATAR APR system, which exploits fix patterns of static analysis violations as ingredients for patch generation. Evaluated on the Defects4J benchmark, we show that, assuming a perfect localization of faults, AVATAR can generate correct patches to fix 34/39 bugs. We further find that AVATAR yields performance metrics that are comparable to that of the closely-related approaches in the literature. While AVATAR outperforms many of the state-of-the-art pattern-based APR systems, it is mostly complementary to current approaches. Overall, our study highlights the relevance of static bug finding tools as indirect contributors of fix ingredients for addressing code defects identified with functional test cases. [less ▲]

Detailed reference viewed: 207 (18 UL)