References of "Dokhanchi, Sayed Hossein 50023492"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEnhanced Automotive Target Detection through Radar and Communications Sensor Fusion
Dokhanchi, Sayed Hossein UL; Mysore Rama Rao, Bhavani Shankar UL; Mishra, Kumar Vijay et al

in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2021, May 13)

This paper shows the enhancement in detection performance in an automotive scenario by leveraging the backscattered communication signals from vehicles at the target scene. A sensor fusion algorithm is ... [more ▼]

This paper shows the enhancement in detection performance in an automotive scenario by leveraging the backscattered communication signals from vehicles at the target scene. A sensor fusion algorithm is proposed to benefit from the information from radar and communication to improve the final range estimates. We demonstrate theoretically and illustrate through simulation that our proposed scheme enhances the radar detection performance. Thus the proposed scheme offers a solution for augmenting existing sensing capabilities to enhance detecting capabilities in a dynamic automotive scenario. [less ▲]

Detailed reference viewed: 28 (0 UL)
Full Text
Peer Reviewed
See detailMulticasting Precoder Design for Vehicular Joint Radar-Communication Systems
Dokhanchi, Sayed Hossein UL; Mysore Rama Rao, Bhavani Shankar UL; Kobayashi, Mari et al

in 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S) (2021, March 16)

We consider the problem of multicasting a single data stream to multiple vehicles in a vehicular network from a joint radar and communication (JRC) equipped vehicle that simultaneously aims to detect ... [more ▼]

We consider the problem of multicasting a single data stream to multiple vehicles in a vehicular network from a joint radar and communication (JRC) equipped vehicle that simultaneously aims to detect multiple targets and estimate their localization parameters such as ranges, Doppler shifts and angles. Assuming channel state information (CSI) is known at the JRC car, we design a precoder that exploits to maximize multicasting rate while simultaneously maximizing the radar Signal to Clutter plus Noise Ratio (SCNR) at the JRC vehicle. [less ▲]

Detailed reference viewed: 32 (0 UL)
See detailWAVEFORM DESIGN FOR AUTOMOTIVE JOINT RADAR-COMMUNICATION SYSTEM
Dokhanchi, Sayed Hossein UL

Doctoral thesis (2020)

Detailed reference viewed: 213 (41 UL)
Full Text
Peer Reviewed
See detailMono-static Automotive Joint Radar-Communications System
Dokhanchi, Sayed Hossein UL; Ottersten, Björn UL

Scientific Conference (2019, November 21)

Detailed reference viewed: 103 (3 UL)
Full Text
Peer Reviewed
See detailAdaptive Waveform Design for Automotive Joint Radar-communications System
Dokhanchi, Sayed Hossein UL; Shankar, M. R. Bhavani; Alaee-Kerahroodi, Mohammad UL et al

in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019)

Detailed reference viewed: 64 (5 UL)
Full Text
Peer Reviewed
See detailOFDM-based automotive joint radar-communication system
Dokhanchi, Sayed Hossein UL; Shankar, Bhavani UL; Stifter, Thomas et al

in 2018 IEEE Radar Conference (RadarConf18) (2018)

We propose a novel automotive joint radar-communication (JRC) system, where the system first transmits OFDM sub-carriers for radar processing followed by sub-carriers enabling radar and communication ... [more ▼]

We propose a novel automotive joint radar-communication (JRC) system, where the system first transmits OFDM sub-carriers for radar processing followed by sub-carriers enabling radar and communication functionalities. The receiver processing includes iterative estimation of parameters to alleviate the shortage of samples to estimate range. The receiver first estimates the target parameters from the sub-carriers dedicated to radar; these parameters then determine the channel for the communication link. The communication data is then extracted, thereby enabling the use of all the carriers for improving the range estimation. It is shown that the range estimation improves significantly after efficient use of all the sub-carriers. Furthermore, for radar parameter estimation, we propose an effective iterative method based on alternating least square (ALS) to recover the angle of arrival (AoA), Doppler and Range. Numerical results demonstrate the feasibility of our proposed system. [less ▲]

Detailed reference viewed: 194 (12 UL)