References of "Dokhanchi, Sayed Hossein"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAdaptive Waveform Design for Automotive Joint Radar-Communication Systems
Dokhanchi, Sayed Hossein; Mysore Rama Rao, Bhavani Shankar UL; Alaeekerahroodi, Mohammad UL et al

in IEEE Transactions on Vehicular Technology (2021), 70(5), 4273-4290

Unified waveform design for automotive joint radar-communications (JRC) leverages the scarce spectrum efficiently and has become a key topic for investigation of late. Designing such a waveform ... [more ▼]

Unified waveform design for automotive joint radar-communications (JRC) leverages the scarce spectrum efficiently and has become a key topic for investigation of late. Designing such a waveform necessitates meeting the requirements of both systems, thereby making it a challenging task. The contribution of this paper is to formulate the JRC design problem into an optimization problem and propose an algorithm to maximize the signal-to-clutter-plus-noise-ratio (SCNR) of radar system and signal-to-noise-ratio (SNR) at communicating vehicle, simultaneously. Central to this are the exploitation of the communication link to acquire environment/ channel information and enhance radar tasks, flexibility to impart trade-off between the two systems during design as well the formulation of the optimization problem to include sidelobe constraints and yield solutions robust to Doppler shifts. The designed waveforms exhibit enhanced radar performance in terms of probability of detection and communication performance in terms of bit error rate (BER), while taking into account the trade-off between two systems. The numerical simulations corroborate the claim of optimized performance with environment/ channel information, ease of effecting trade-off and the use of design flexibility. [less ▲]

Detailed reference viewed: 29 (0 UL)
Full Text
Peer Reviewed
See detailMulticarrier phase modulated continuous waveform for automotive joint radar-communication system
Dokhanchi, Sayed Hossein; Shankar, Bhavani UL; Stifter, Thomas Stifter et al

in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2018)

Automotive radar implementation in the mm Wave band (79 G Hz) is being increasingly considered for the high bandwidths offered. While the radar systems and technology is maturing in mm Wave bands, the ... [more ▼]

Automotive radar implementation in the mm Wave band (79 G Hz) is being increasingly considered for the high bandwidths offered. While the radar systems and technology is maturing in mm Wave bands, the reuse of radar spectrum for low latency, limited throughput and safety critical communication has started to receive attention of late. Towards this, a joint radar-communication (JRC) system is proposed where the platform performs sensing and communication operations. The major challenge in JRC waveform design is the lack of degrees of freedom (DoF), due to need to estimate communication symbols in addition to the radar parameters. In this work, we propose a novel automotive JRC system based on multicarrier phase-modulated continuous waveform (MC-PMCW). MC-PMCW provides sufficient DoF to confine desired parameters, i.e., angles of arrival, Doppler shifts, ranges, and communication symbols in different dimensions. It can overcome the limitations of conventional PMCW and OFDM waveforms by leveraging the multicarrier feature of OFDM and the code sequence of PMCW to embed radar and communication. Further, the separation of parameters into different domains reduces complexity and enhances robustness; this is desirable in automotive scenarios characterized by dynamic scenes. Numerical results demonstrate the effectiveness of the proposed system. [less ▲]

Detailed reference viewed: 119 (2 UL)