References of "Debot, Alice 50035876"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWaste- and Cd-Free Inkjet-Printed Zn(O,S) Buffer for Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells
Chu, van Ben UL; Siopa, Daniel UL; Debot, Alice UL et al

in ACS Applied Materials and Interfaces (2021), 13

Detailed reference viewed: 70 (1 UL)
Full Text
Peer Reviewed
See detailThe effect of KF post-deposition treatments on the optoelectronic properties of Cu(In,Ga)Se2 single crystals
Ramirez Sanchez, Omar UL; Bertrand, Maud; Debot, Alice UL et al

in Solar RRL (2021)

The power conversion efficiency boost of Cu(In,Ga)Se2 in the past years has been possible due to the incorporation of heavy alkali atoms. Their addition through post-deposition treatments results in an ... [more ▼]

The power conversion efficiency boost of Cu(In,Ga)Se2 in the past years has been possible due to the incorporation of heavy alkali atoms. Their addition through post-deposition treatments results in an improvement of the open-circuit voltage, which origin has been associated with grain boundaries. The present work discusses the effect of potassium fluoride post-deposition treatments on the optoelectronic properties of a series of sodium-free Cu(In,Ga)Se2 single crystals with varying Cu and Ga content. Results suggest that improvement of the quasi-Fermi level splitting can be achieved despite the absence of grain boundaries, being greater in low-gallium Cu-poor absorbers. Secondary ion mass spectrometry reveals the presence of potassium inside the bulk of the films, suggesting that transport of potassium can occur through grain interiors. In addition, a type inversion from n to p in KF-treated low-gallium Cu(In,Ga)Se2 is observed, which along a carrier lifetime study demonstrates that potassium can act as a dopant. The fact that potassium by its own can alter the optoelectronic properties of Cu(In,Ga)Se2 single crystals demonstrates that the effect of post-deposition treatments goes beyond grain boundary passivation. [less ▲]

Detailed reference viewed: 170 (20 UL)
Full Text
Peer Reviewed
See detailElectronic and compositional properties of the rear-side of stoichiometric CuInSe2 absorbers
Kameni Boumenou, Christian UL; Elisabeth, Amala; Babbe, Finn et al

in Progress in Photovoltaics (2020)

In-depth understanding and subsequent optimization of the contact layers in thin film solar cells are of high importance in order to reduce the amount of nonradiative recombination and thereby improve ... [more ▼]

In-depth understanding and subsequent optimization of the contact layers in thin film solar cells are of high importance in order to reduce the amount of nonradiative recombination and thereby improve device performance. In this work, the buried MoSe2/CuInSe2 interface of stoichiometric absorbers is investigated with scanning tunneling spectroscopy and Kelvin probe force microscopy combined with compositional measurements acquired via photo-electron spectroscopy after a mechanical lift-off process. We find that the local density of states, as measured with scanning tunneling spectroscopy, is similar to the front-side of ultra-high vacuum annealed CISe absorbers. The grain boundaries exhibit a weak upward band bending, opposite to Cu-poor CuGaSe2, and we measure an increased Cu accumulation at the rear CISe surface compared to the bulk composition and a non-zero concentration of Cu on the Mo-side. Grazing incidence X-ray diffraction measurements corroborate that a small amount of a CuxSe secondary phase is present at the MoSe2/CuInSe2 interface in contrast to reports on Cu-poor material. Our findings shed new light into the complex interface formation of CuInSe2-based thin film solar cells grown under Cu-rich conditions. [less ▲]

Detailed reference viewed: 53 (9 UL)