References of "De Meulder, Bertrand"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCOVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.
Ostaszewski, Marek UL; Niarakis, Anna; Mazein, Alexander UL et al

in Molecular systems biology (2021), 17(10), 10387

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets ... [more ▼]

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective. [less ▲]

Detailed reference viewed: 64 (3 UL)
Full Text
Peer Reviewed
See detailSystems medicine disease maps: community-driven comprehensive representation of disease mechanisms.
Mazein, Alexander; Ostaszewski, Marek UL; Kuperstein, Inna et al

in NPJ systems biology and applications (2018), 4

The development of computational approaches in systems biology has reached a state of maturity that allows their transition to systems medicine. Despite this progress, intuitive visualisation and context ... [more ▼]

The development of computational approaches in systems biology has reached a state of maturity that allows their transition to systems medicine. Despite this progress, intuitive visualisation and context-dependent knowledge representation still present a major bottleneck. In this paper, we describe the Disease Maps Project, an effort towards a community-driven computationally readable comprehensive representation of disease mechanisms. We outline the key principles and the framework required for the success of this initiative, including use of best practices, standards and protocols. We apply a modular approach to ensure efficient sharing and reuse of resources for projects dedicated to specific diseases. Community-wide use of disease maps will accelerate the conduct of biomedical research and lead to new disease ontologies defined from mechanism-based disease endotypes rather than phenotypes. [less ▲]

Detailed reference viewed: 193 (20 UL)