References of "Dazhi, Michael 50044698"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTerminal-Aware Multi-Connectivity Scheduler for Uplink Multi-Layer Non-Terrestrial Networks
Dazhi, Michael UL; Al-Hraishawi, Hayder UL; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE Global Communications Conference (Globecom) (2023, January 12)

This paper introduces the concept of multi-connectivity (MC) to the multi-orbit non-terrestrial networks (NTNs), where user terminals can be served by more than one satellite to achieve higher peak ... [more ▼]

This paper introduces the concept of multi-connectivity (MC) to the multi-orbit non-terrestrial networks (NTNs), where user terminals can be served by more than one satellite to achieve higher peak throughput. MC is a technique initially introduced by the 3rd Generation Partnership Project (3GPP) for terrestrial communications in 4G and 5G, it has shown much gain in the terrestrial domain and this paper explores areas where this concept can benefit the satellite domain. MC can increase throughput, but this entails increased power consumption at user terminal for uplink transmissions. The energy efficiency of uplink communications can be improved by designing efficient scheduling schemes, and to this end, we developed a terminal aware multi-connectivity scheduling algorithm. This proposed algorithm uses the available radio resources and propagation information to intelligently define a dynamic resource allocation pattern, that optimally routes traffic so as to maximize uplink data rate while minimizing the energy consumption at the UT. The algorithm operates with the terminal differentiating multi-layer NTN resource scheduling architecture, which has a softwarized dispatcher at the network layer that classifies and differentiates the packets based on terminal type. The performance of the proposed algorithm was compared with round robin and joint carrier schedulers in terms of uplink data rate and energy efficiency. We also provide architectural design of implementable schedulers for multi-orbital satellite networks that can operate with different classes of terminals. [less ▲]

Detailed reference viewed: 145 (36 UL)
Full Text
Peer Reviewed
See detailUplink Capacity Optimization for High Throughput Satellites using SDN and Multi-Orbital Dual Connectivity
Dazhi, Michael UL; Al-Hraishawi, Hayder UL; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE International Conference on Communications (ICC) (2022, July 11)

Dual Connectivity is a key approach to achieving optimization of throughput and latency in heterogeneous networks. Originally a technique introduced by the 3rd Generation Partnership Project (3GPP) for ... [more ▼]

Dual Connectivity is a key approach to achieving optimization of throughput and latency in heterogeneous networks. Originally a technique introduced by the 3rd Generation Partnership Project (3GPP) for terrestrial communications, it is not been widely explored in satellite systems. In this paper, Dual Connectivity is implemented in a multi-orbital satellite network, where a network model is developed by employing the diversity gains from Dual Connectivity and Carrier Aggregation for the enhancement of satellite uplink capacity. An introduction of software defined network controller is performed at the network layer coupled with a carefully designed hybrid resource allocation algorithm which is implemented strategically. The algorithm performs optimum dynamic flow control and traffic steering by considering the availability of resources and the channel propagation information of the orbital links to arrive at a resource allocation pattern suitable in enhancing uplink system performance. Simulation results are shown to evaluate the achievable gains in throughput and latency; in addition we provide useful insight in the design of multi-orbital satellite networks with implementable scheduler design. [less ▲]

Detailed reference viewed: 233 (91 UL)