Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

Polyhedra inscribed in a quadric ; ; Schlenker, Jean-Marc in Inventiones Mathematicae (in press) We study convex polyhedra in three-space that are inscribed in a quadric surface. Up to projective transformations, there are three such surfaces: the sphere, the hyperboloid, and the cylinder. Our main ... [more ▼] We study convex polyhedra in three-space that are inscribed in a quadric surface. Up to projective transformations, there are three such surfaces: the sphere, the hyperboloid, and the cylinder. Our main result is that a planar graph $\Gamma$ is realized as the $1$--skeleton of a polyhedron inscribed in the hyperboloid or cylinder if and only if $\Gamma$ is realized as the $1$--skeleton of a polyhedron inscribed in the sphere and $\Gamma$ admits a Hamiltonian cycle. Rivin characterized convex polyhedra inscribed in the sphere by studying the geometry of ideal polyhedra in hyperbolic space. We study the case of the hyperboloid and the cylinder by parameterizing the space of convex ideal polyhedra in anti-de Sitter geometry and in half-pipe geometry. Just as the cylinder can be seen as a degeneration of the sphere and the hyperboloid, half-pipe geometry is naturally a limit of both hyperbolic and anti-de Sitter geometry. We promote a unified point of view to the study of the three cases throughout. [less ▲] Detailed reference viewed: 74 (5 UL)Quasicircles and width of Jordan curves in CP1 ; ; et al E-print/Working paper (2019) We study a notion of "width" for Jordan curves in CP1, paying special attention to the class of quasicircles. The width of a Jordan curve is defined in terms of the geometry of its convex hull in ... [more ▼] We study a notion of "width" for Jordan curves in CP1, paying special attention to the class of quasicircles. The width of a Jordan curve is defined in terms of the geometry of its convex hull in hyperbolic three-space. A similar invariant in the setting of anti de Sitter geometry was used by Bonsante-Schlenker to characterize quasicircles amongst a larger class of Jordan curves in the boundary of anti de Sitter space. By contrast to the AdS setting, we show that there are Jordan curves of bounded width which fail to be quasicircles. However, we show that Jordan curves with small width are quasicircles. [less ▲] Detailed reference viewed: 30 (0 UL)Higher signature Delaunay decompositions ; ; Schlenker, Jean-Marc E-print/Working paper (2016) A Delaunay decomposition is a cell decomposition in R^d for which each cell is inscribed in a Euclidean ball which is empty of all other vertices. This article introduces a generalization of the Delaunay ... [more ▼] A Delaunay decomposition is a cell decomposition in R^d for which each cell is inscribed in a Euclidean ball which is empty of all other vertices. This article introduces a generalization of the Delaunay decomposition in which the Euclidean balls in the empty ball condition are replaced by other families of regions bounded by certain quadratic hypersurfaces. This generalized notion is adaptable to geometric contexts in which the natural space from which the point set is sampled is not Euclidean, but rather some other flat semi-Riemannian geometry, possibly with degenerate directions. We prove the existence and uniqueness of the decomposition and discuss some of its basic properties. In the case of dimension d = 2, we study the extent to which some of the well-known optimality properties of the Euclidean Delaunay triangulation generalize to the higher signature setting. In particular, we describe a higher signature generalization of a well-known description of Delaunay decompositions in terms of the intersection angles between the circumscribed circles. [less ▲] Detailed reference viewed: 35 (2 UL) |
||