References of "Crunelle, Romain"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCANMatch: A Fully Automated Tool for CAN Bus Reverse Engineering based on Frame Matching
Buscemi, Alessio UL; Turcanu, Ion; Castignani, German et al

in IEEE Transactions on Vehicular Technology (2021)

Controller Area Network (CAN) is the most frequently used in-vehicle communication system in the automotive industry today. The communication inside the CAN bus is typically encoded using proprietary ... [more ▼]

Controller Area Network (CAN) is the most frequently used in-vehicle communication system in the automotive industry today. The communication inside the CAN bus is typically encoded using proprietary formats in order to prevent easy access to the information exchanged on the bus. However, it is still possible to decode this information through reverse engineering, performed either manually or via automated tools. Existing automated CAN bus reverse engineering methods are still time-consuming and require some manual effort, i.e., to inject diagnostic messages in order to trigger specific responses. In this paper, we propose CANMatch a fully automated CAN bus reverse engineering framework that does not require any manual effort and significantly decreases the execution time by exploiting the reuse of CAN frames across different vehicle models. We evaluate the proposed solution on a dataset of CAN logs, or traces, related to 479 vehicles from 29 different automotive manufacturers, demonstrating its improved performance with respect to the state of the art. [less ▲]

Detailed reference viewed: 106 (19 UL)
Full Text
Peer Reviewed
See detailPoster: A Methodology for Semi-Automated CAN Bus Reverse Engineering
Buscemi, Alessio UL; Turcanu, Ion; German, Castignani et al

Poster (2021, November)

Semi-automated Controller Area Network (CAN) reverse engineering has been shown to provide decoding accuracy comparable to the manual approach, while reducing the time required to decode signals. However ... [more ▼]

Semi-automated Controller Area Network (CAN) reverse engineering has been shown to provide decoding accuracy comparable to the manual approach, while reducing the time required to decode signals. However, current approaches are invasive, as they make use of diagnostic messages injected through the On-Board Diagnostics (OBD-II) port and often require a high amount of non-CAN external data. In this work, we present a non-invasive universal methodology for semi-automated CAN bus reverse engineering, which is based on the taxonomy of CAN signals. The data collection is simplified and its time reduced from the current standard of up to an hour to few minutes. A mean recall of around 80 % is obtained. [less ▲]

Detailed reference viewed: 100 (28 UL)