References of "Cruciani, Gérald 50008648"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGene-corrected p.A30P SNCA patient-derived isogenic neurons rescue neuronal branching and function
Barbuti, Peter A; Ohnmacht, Jochen UL; Santos, Bruno FR et al

in Scientific Reports (2021), 11

Parkinson’s disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the ... [more ▼]

Parkinson’s disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the alpha-synuclein protein causing an autosomal-dominant form of PD. There are limited studies assessing pathogenic SNCA mutations in patient-derived isogenic cell models. Here we provide a functional assessment of dopaminergic neurons derived from a patient harbouring the p.A30P SNCA mutation. Using two clonal gene-corrected isogenic cell lines we identified image-based phenotypes showing impaired neuritic processes. The pathological neurons displayed impaired neuronal activity, reduced mitochondrial respiration, an energy deficit, vulnerability to rotenone, and transcriptional alterations in lipid metabolism. Our data describes for the first time the mutation-only effect of the p.A30P SNCA mutation on neuronal function, supporting the use of isogenic cell lines in identifying image-based pathological phenotypes that can serve as an entry point for future disease-modifying compound screenings and drug discovery strategies. [less ▲]

Detailed reference viewed: 33 (1 UL)
Full Text
Peer Reviewed
See detailGeneration of two iPS cell lines (HIHDNDi001-A and HIHDNDi001-B) from a Parkinson's disease patient carrying the heterozygous p.A30P mutation in SNCA.
Barbuti, Peter; Santos, Bruno; Dording, Claire UL et al

in Stem cell research (2020), 48

Dermal fibroblasts from a patient carrying a heterozygous c.88G > C mutation in the SNCA gene that encodes alpha-synuclein were reprogrammed to pluripotency by retroviruses. This pathogenic mutation ... [more ▼]

Dermal fibroblasts from a patient carrying a heterozygous c.88G > C mutation in the SNCA gene that encodes alpha-synuclein were reprogrammed to pluripotency by retroviruses. This pathogenic mutation generates the p.A30P form of the alpha-synuclein protein leading to autosomal dominantly inherited Parkinson's disease (PD). Two clonal iPS cell lines were generated (A30P-3 and A30P-4) and characterised by validating the silencing of viral transgenes, the expression of endogenous pluripotency genes, directed differentiation into three germ layers in-vitro and a stable molecular genotype. These iPSC lines will serve as a valuable resource in determining the role of the p.A30P SNCA mutation in PD pathogenesis. [less ▲]

Detailed reference viewed: 58 (1 UL)
Full Text
Peer Reviewed
See detailInduced pluripotent stem cell line (LCSBi001-A) derived from a patient with Parkinson's disease carrying the p.D620N mutation in VPS35
Larsen, Simone UL; Hanss, Zoé UL; Cruciani, Gérald UL et al

in Stem Cell Research (2020)

Fibroblasts were obtained from a 76 year-old man diagnosed with Parkinson's disease (PD). The disease is caused by a heterozygous p.D620N mutation in VPS35. Induced pluripotent stem cells (iPSCs) were ... [more ▼]

Fibroblasts were obtained from a 76 year-old man diagnosed with Parkinson's disease (PD). The disease is caused by a heterozygous p.D620N mutation in VPS35. Induced pluripotent stem cells (iPSCs) were generated using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific). The presence of the c.1858G > A base exchange in exon 15 of VPS35 was confirmed by Sanger sequencing. The iPSCs are free of genomically integrated reprogramming genes, express pluripotency markers, display in vitro differentiation potential to the three germ layers and have karyotypic integrity. Our iPSC line will be useful for studying the impact of the p.D620N mutation in VPS35 in vitro. [less ▲]

Detailed reference viewed: 81 (7 UL)
Full Text
Peer Reviewed
See detailUsing High-Content Screening to Generate Single-Cell Gene-Corrected Patient-Derived iPS Clones Reveals Excess Alpha-Synuclein with Familial Parkinson's Disease Point Mutation A30P.
Barbuti, Peter UL; Antony, Paul UL; Rodrigues Santos, Bruno UL et al

in Cells (2020), 9(9),

The generation of isogenic induced pluripotent stem cell (iPSC) lines using CRISPR-Cas9 technology is a technically challenging, time-consuming process with variable efficiency. Here we use fluorescence ... [more ▼]

The generation of isogenic induced pluripotent stem cell (iPSC) lines using CRISPR-Cas9 technology is a technically challenging, time-consuming process with variable efficiency. Here we use fluorescence-activated cell sorting (FACS) to sort biallelic CRISPR-Cas9 edited single-cell iPSC clones into high-throughput 96-well microtiter plates. We used high-content screening (HCS) technology and generated an in-house developed algorithm to select the correctly edited isogenic clones for continued expansion and validation. In our model we have gene-corrected the iPSCs of a Parkinson's disease (PD) patient carrying the autosomal dominantly inherited heterozygous c.88G>C mutation in the SNCA gene, which leads to the pathogenic p.A30P form of the alpha-synuclein protein. Undertaking a PCR restriction-digest mediated clonal selection strategy prior to sequencing, we were able to post-sort validate each isogenic clone using a quadruple screening strategy prior to generating footprint-free isogenic iPSC lines, retaining a normal molecular karyotype, pluripotency and three germ-layer differentiation potential. Directed differentiation into midbrain dopaminergic neurons revealed that SNCA expression is reduced in the gene-corrected clones, which was validated by a reduction at the alpha-synuclein protein level. The generation of single-cell isogenic clones facilitates new insights in the role of alpha-synuclein in PD and furthermore is applicable across patient-derived disease models. [less ▲]

Detailed reference viewed: 122 (5 UL)