References of "Coloma Chacon, Sofia 50043936"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEnhancing Rover Teleoperation on the Moon With Proprioceptive Sensors and Machine Learning Techniques
Coloma Chacon, Sofia UL; Martinez Luna, Carol UL; Yalcin, Baris Can UL et al

in IEEE Robotics and Automation Letters (2022)

Geological formations, environmental conditions, and soil mechanics frequently generate undesired effects on rovers’ mobility, such as slippage or sinkage. Underestimating these undesired effects may ... [more ▼]

Geological formations, environmental conditions, and soil mechanics frequently generate undesired effects on rovers’ mobility, such as slippage or sinkage. Underestimating these undesired effects may compromise the rovers’ operation and lead to a premature end of the mission. Minimizing mobility risks becomes a priority for colonising the Moon and Mars. However, addressing this challenge cannot be treated equally for every celestial body since the control strategies may differ; e.g. the low latency EarthMoon communication allows constant monitoring and controls, something not feasible on Mars. This letter proposes a Hazard Information System (HIS) that estimates the rover’s mobility risks (e.g. slippage) using proprioceptive sensors and Machine Learning (supervised and unsupervised). A Graphical User Interface was created to assist human-teleoperation tasks by presenting mobility risk indicators. The system has been developed and evaluated in the lunar analogue facility (LunaLab) at the University of Luxembourg. A real rover and eight participants were part of the experiments. Results demonstrate the benefits of the HIS in the decision-making processes of the operator’s response to overcome hazardous situations. [less ▲]

Detailed reference viewed: 106 (27 UL)
Peer Reviewed
See detailAssessment of a textile portable exoskeleton for the upper limbs' flexion
Samper-Escudero, Jose Luis; Coloma Chacon, Sofia UL; Olivares Mendez, Miguel Angel UL et al

Scientific Conference (2021)

Flexible exoskeletons are lightweight robots that surround the user’s anatomy to assist or oppose motion. Their structure is made of light and flexible materials, like fabrics, so the forces created by ... [more ▼]

Flexible exoskeletons are lightweight robots that surround the user’s anatomy to assist or oppose motion. Their structure is made of light and flexible materials, like fabrics, so the forces created by the robot are directly transferred to the user’s musculoskeletal system. Exosuits are thus sensitive to the sliding of the actuation, textile perturbations and improper fitting to the user. LUXBIT is a cable-driven flexible exoskeleton that combines fabrics and sewing patterns to promote its anatomical adaption. The exoskeleton is intended for bimanual assistance of daily tasks and long-term usage. To this end, the system reduces the pressures applied to the user and the misalignment of the actuation by stacking textile patches. The patches enhance the functioning of the base garment and promote the transference of the assistance forces. Additionally, LUXBIT has a compact actuation with deformable components to prevent the user movements from being restricted. The exoskeleton is portable by using an enhanced textile backpack. This paper shows the exoskeleton’s benefits for trajectory and muscle activity during the flexion of the shoulder and the elbow. [less ▲]

Detailed reference viewed: 64 (4 UL)