Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

A simple and robust computational homogenization approach for heterogeneous particulate composites ; ; et al in Computer Methods in Applied Mechanics and Engineering (2019), 349 In this article, a computationally efficient multi-split MsXFEM is proposed to evaluate the elastic properties of heterogeneous materials. The multi-split MsXFEM is the combination of multi-split XFEM ... [more ▼] In this article, a computationally efficient multi-split MsXFEM is proposed to evaluate the elastic properties of heterogeneous materials. The multi-split MsXFEM is the combination of multi-split XFEM with multiscale finite element methods (MsFEM). The multi-split XFEM is capable to model multiple discontinuities in a single element which leads to reduction in the number of mesh elements, whereas MsFEM helps in reducing the computational time. Strain energy based homogenization has been implemented on an RVE (having volume fraction of heterogeneities up to 50%) for evaluating the elastic properties. From macro-element size analysis, we estimate that the RVE edge length must be 5 times the edge length of the macro-element. The directional analysis has been performed to verify the isotropic behavior of the material, whereas contrast analysis has been done to check the numerical accuracy of the proposed scheme. A level set correction (LSC) based on higher order shape functions has been proposed to reduce mapping errors of level set values. It is also observed that multi-split MsXFEM is about 16 times computationally more efficient than MsXFEM for 50% volume of heterogeneities. [less ▲] Detailed reference viewed: 23 (0 UL)Error estimation and space-time adaptivity for the isogeometric analysis of transient structural dynamics ; ; Bordas, Stéphane et al Scientific Conference (2016, April 01) This paper presents a new adaptive scheme for the error-controlled simulation of transient dynamics problem. We rely on spline bases for the higher-order spatial description of our kinematic fields. Local ... [more ▼] This paper presents a new adaptive scheme for the error-controlled simulation of transient dynamics problem. We rely on spline bases for the higher-order spatial description of our kinematic fields. Local adaptivity is performed by employing a hierarchical T-mesh technology, in combination with geometry independent field approximation. The Newmark algorithm is chosen to solve the semidiscrete equation of motion. We will present some simple local error estimates to drive the adaptivity, and show how we can ensure that the mechanical energy of conservative systems is preserved during the refinement process. [less ▲] Detailed reference viewed: 101 (4 UL)Hybrid mesh/particle meshless method for geological flows with discontinuous transport properties Bourantas, Georgios ; ; et al Scientific Conference (2015, April 12) Geodynamic modeling is an important branch of Earth Sciences. Direct observation of geodynamic processes is limited in both time and space, while on the other hand numerical methods are capable of ... [more ▼] Geodynamic modeling is an important branch of Earth Sciences. Direct observation of geodynamic processes is limited in both time and space, while on the other hand numerical methods are capable of simulating millions of years in a matter of days on a desktop computer. The model equations can be reduced to a set of Partial Differential Equations with possibly discontinuous coefficients, governing mass, momentum and heat transfer over the domain. Some of the major challenges associated with such simulations are (1) geological time scales, which require long (in physical time) simulations using small time steps; (2) the presence of localization zones over which large gradients are present and which are much smaller than the overall physical dimensions of the computational domain and require much more refined discretization than for the rest of the domain, much like in fracture or shear band mechanics. An added difficulty is that such structures in the solution may appear after long periods of stagnant behaviour; (3) the definition of boundary conditions, material parameters and that of a suitable computational domain in terms of size; (4) a posteriori error estimation, sensitivity analysis and discretization adaptivity for the resulting coupled problem, including error propagation between different unknown fields. Consequently, it is arguable that any suitable numerical methods aimed at the solution of such problems on a large scale must be able to (i) provide ease of discretization refinement, including possible partition of unity enrichment; (ii) offer a large stability domain, so that “large” time steps can be chosen; (iii) ease of parallelization and good scalability. Our approach is to rely on “meshless” methods based on a point collocation strategy for the discretization of the set of PDEs. The method is hybrid Eulerian/Lagrangian, which enables to switch easily between stagnant periods and periods of localization. Mass and momentum equations are solved using a meshless point collocation Eulerian method, while energy equation are solved using a set of particles, distributed over the spatial domain, with the solution interpolated back to the Eulerian grid at every time step. This hybrid approach allows for the accurate calculation of fine thermal structures, through the ease of adaptivity offered by the flexibility of the particle method. The approximation space is constructed using the Discretization Correction Particle Strength Exchange (DC PSE) method. The proposed scheme gives the capability of solving flow equations (Stokes flow) in fully irregular geometries while particles, “sprinkled” in the spatial domain, are used to solve convection-diffusion problems avoiding the oscillation produced in the Eulerian approach. The resulting algebraic linear systems were solved using direct solvers. Our hybrid approach can capture sharp variations of stresses and thermal gradients in problems with a strongly variable viscosity and thermal conductivity as demonstrated through various benchmarking test cases such as the development of Rayleigh-Taylor instabilities, viscous heating and flows with non-Newtonian rheology. [less ▲] Detailed reference viewed: 590 (29 UL) |
||