References of "Chinnery, Patrick F."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Human Phenotype Ontology in 2017
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark et al

in Nucleic Acids Research (2016)

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components ... [more ▼]

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. [less ▲]

Detailed reference viewed: 184 (1 UL)
Full Text
Peer Reviewed
See detailSingle-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene.
Elstner, Matthias; Morris, Christopher M.; Heim, Katharina et al

in Annals of neurology (2009), 66(6), 792-8

OBJECTIVE: The etiology of Parkinson disease (PD) is complex and multifactorial, with hereditary and environmental factors contributing. Monogenic forms have provided molecular clues to disease mechanisms ... [more ▼]

OBJECTIVE: The etiology of Parkinson disease (PD) is complex and multifactorial, with hereditary and environmental factors contributing. Monogenic forms have provided molecular clues to disease mechanisms but genetic modifiers of idiopathic PD are still to be determined. METHODS: We carried out whole-genome expression profiling of isolated human substantia nigra (SN) neurons from patients with PD vs. controls followed by association analysis of tagging single-nucleotide polymorphisms (SNPs) in differentially regulated genes. Association was investigated in a German PD sample and confirmed in Italian and British cohorts. RESULTS: We identified four differentially expressed genes located in PD candidate pathways, ie, MTND2 (mitochondrial, p = 7.14 x 10(-7)), PDXK (vitamin B6/dopamine metabolism, p = 3.27 x 10(-6)), SRGAP3 (axon guidance, p = 5.65 x 10(-6)), and TRAPPC4 (vesicle transport, p = 5.81 x 10(-6)). We identified a DNA variant (rs2010795) in PDXK associated with an increased risk of PD in the German cohort (p = 0.00032). This association was confirmed in the British (p = 0.028) and Italian (p = 0.0025) cohorts individually and reached a combined value of p = 1.2 x 10(-7) (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.18-1.44). INTERPRETATION: We provide an example of how microgenomic genome-wide expression studies in combination with association analysis can aid to identify genetic modifiers in neurodegenerative disorders. The detection of a genetic variant in PDXK, together with evidence accumulating from clinical studies, emphasize the impact of vitamin B6 status and metabolism on disease risk and therapy in PD. [less ▲]

Detailed reference viewed: 154 (5 UL)