References of "Chatzinotas, Symeon 50001234"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHybrid Transceivers Design for Large-Scale Antenna Arrays Using Majorization-Minimization Algorithms
Arora, Aakash UL; Tsinos, Christos UL; Shankar, Bhavani UL et al

in IEEE Transactions on Signal Processing (in press)

Detailed reference viewed: 129 (43 UL)
Full Text
Peer Reviewed
See detailInterference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions
Li, Ang; Spano, Danilo UL; Krivochiza, Jevgenij UL et al

in IEEE Communications Surveys and Tutorials (2020)

Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by ... [more ▼]

Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area. [less ▲]

Detailed reference viewed: 19 (0 UL)
Full Text
Peer Reviewed
See detailModeling and Implementation of 5G Edge Caching over Satellite
Vu, Thang Xuan UL; Poirier, Yannick; Chatzinotas, Symeon UL et al

in International Journal of Satellite Communications and Networking (2020)

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent latency requirements due to the massive invasion of connected devices and data-hungry applications. Edge ... [more ▼]

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent latency requirements due to the massive invasion of connected devices and data-hungry applications. Edge caching is a promising technique to overcome these challenges by prefetching the content closer to the end users at the edge node’s local storage. In this paper, we analyze the performance of edge caching 5G networks with the aid of satellite communication systems. Firstly, we investigate the satellite-aided edge caching systems in two promising use cases: a) in dense urban areas, and b) in sparsely populated regions, e.g., rural areas. Secondly, we study the effectiveness of satellite systems via the proposed satellite-aided caching algorithm, which can be used in three configurations: i) mono-beam satellite, ii) multi-beam satellite, and iii) hybrid mode. Thirdly, the proposed caching algorithm is evaluated by using both empirical Zipf-distribution data and the more realistic Movielens dataset. Last but not least, the proposed caching scheme is implemented and tested by our developed demonstrators which allow real-time analysis of the cache hit ratio and cost analysis. [less ▲]

Detailed reference viewed: 40 (0 UL)
Full Text
Peer Reviewed
See detailCarrier Aggregation in Multi-Beam High Throughput Satellite Systems
Kibria, Mirza UL; Lagunas, Eva UL; Maturo, Nicola UL et al

in Carrier Aggregation in Multi-Beam High Throughput Satellite Systems (2019, December 10)

Carrier Aggregation (CA) is an integral part of current terrestrial networks. Its ability to enhance the peak data rate, to efficiently utilize the limited available spectrum resources and to satisfy the ... [more ▼]

Carrier Aggregation (CA) is an integral part of current terrestrial networks. Its ability to enhance the peak data rate, to efficiently utilize the limited available spectrum resources and to satisfy the demand for data-hungry applications has drawn large attention from different wireless network communities. Given the benefits of CA in the terrestrial wireless environment, it is of great interest to analyze and evaluate the potential impact of CA in the satellite domain. In this paper, we study CA in multi-beam high throughput satellite systems. We consider both inter-transponder and intra-transponder CA at the satellite payload level of the communication stack, and we address the problem of carrier-user assignment assuming that multiple users can be multiplexed in each carrier. The transmission parameters of different carriers are generated considering the transmission characteristics of carriers in different transponders. In particular, we propose a flexible carrier allocation approach for a CA enabled multi-beam satellite system targeting a proportionally fair user demand satisfaction. Simulation results and analysis shed some light on this rather unexplored scenario and demonstrate the feasibility of the CA in satellite communication systems. [less ▲]

Detailed reference viewed: 6 (2 UL)
Full Text
Peer Reviewed
See detailJoint Scheduling and Precoding for Frame-Based Multigroup Multicasting in Satellite Communications
Bandi, Ashok UL; Shankar, Bhavani UL; Chatzinotas, Symeon UL et al

in Bandi, Ashok; Shankar, Bhavani; Chatzinotas, Symeon (Eds.) et al Joint Scheduling and Precoding for Frame-Based Multigroup Multicasting in Satellite Communications (2019, December 09)

Recent satellite standards enforce the coding of multiple users’ data in a frame. This transmission strategy mimics the well-known physical layer multigroup multicasting (MGMC). However, typical beam ... [more ▼]

Recent satellite standards enforce the coding of multiple users’ data in a frame. This transmission strategy mimics the well-known physical layer multigroup multicasting (MGMC). However, typical beam coverage with a large number of users and limited frame length lead to the scheduling of only a few users. Moreover, in emerging aggressive frequency reuse systems, scheduling is coupled with precoding. This is addressed in this work, through the joint design of scheduling and precoding for frame-based MGMC satellite systems. This aim is formulated as the maximization of the sum-rate under per beam power constraint and minimum SINR requirement of scheduled users. Further, a framework is proposed to transform the non-smooth SR objective with integer scheduling and nonconvex SINR constraints as a difference-of-convex problem that facilitates the joint update of scheduling and precoding. Therein, an efficient convex-concave procedure based algorithm is proposed. Finally, the gains (up to 50%) obtained by the jointed design over state-of-the-art methods is shown through Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 105 (30 UL)
Full Text
Peer Reviewed
See detailPerformance Analysis of Integrated Satellite-Terrestrial Multiantenna Relay Networks with Multiuser Scheduling
Huang, Qingquan; Lin, Min; Zhu, Wei-Ping et al

in IEEE Transactions on Aerospace and Electronic Systems (2019)

In this paper, we investigate the performance of a multiuser integrated satellite-terrestrial relay network (ISTRN) with threshold-based decode-and-forward protocol, where the satellite-relay link ... [more ▼]

In this paper, we investigate the performance of a multiuser integrated satellite-terrestrial relay network (ISTRN) with threshold-based decode-and-forward protocol, where the satellite-relay link undergoes Shadowed-Rician (SR) fading while the relay-user links experience Nakagami-m fading. We first formulate a constrained optimization problem with an objective to maximize the system capacity in order to determine the beamforming weight vectors at the relay, and thereby develop two multiuser scheduling schemes, namely, best user scheduling and user fairness scheduling. Then, we present a closedform expression for the probability density function (PDF) of the square sum of independent and identically distributed SR random variables, which is more accurate and concise than the existing solutions. Based on the new PDF results, we derive closedform expressions for the outage probability (OP) and ergodic capacity of the considered network using the two scheduling schemes. Furthermore, the asymptotic OP expressions at high signal-to-noise ratio are also deduced to reveal the asymptotic behavior of the considered ISTRN. Finally, simulation results are provided to validate our theoretical analysis, and show the impact of various parameters on the system performance. [less ▲]

Detailed reference viewed: 4 (0 UL)
Full Text
Peer Reviewed
See detailHardware Precoding Demonstration in Multi-Beam UHTS Communications under Realistic Payload Characteristics
Merlano Duncan, Juan Carlos UL; Querol Borras, Jorge UL; Maturo, Nicola UL et al

in Proceedings of the 37th International Communications Satellite Systems Conference (2019, November 01)

In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic ... [more ▼]

In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic payload and channel impairments. We build the test-bed to demonstrate a real-time channel aided precoded transmission under realistic conditions such as the power constraints and satellite-payload non-linearities. We develop a scalable architecture of an SDR platform with the DVB-S2X piloting. The SDR platform consists of two parts: analog-to-digital (ADC) and digital-to-analog (DAC) converters preceded by radio frequency (RF) front-end and Field-Programmable Gate Array (FPGA) backend. The former introduces realistic impairments in the transmission chain such as carrier frequency and phase misalignments, quantization noise of multichannel ADC and DAC and non-linearities of RF components. It allows evaluating the performance of the precoded transmission in a more realistic environment rather than using only numerical simulations. We benchmark the performance of the communication standard in realistic channel scenarios, evaluate received signal SNR, and measure the actual channel throughput using LDPC codes. [less ▲]

Detailed reference viewed: 14 (0 UL)
Full Text
See detailUser Terminal Wideband Modem for Very High Throughput Satellites
Kisseleff, Steven UL; Maturo, Nicola UL; Chatzinotas, Symeon UL et al

in 37th International Communications Satellite Systems Conference (ICSSC), Japan, October 2019 (2019, November)

Detailed reference viewed: 30 (0 UL)
Full Text
Peer Reviewed
See detailA Joint Solution for Scheduling and Precoding in Multiuser MISO Downlink Channels
Bandi, Ashok UL; Shankar, Bhavani UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2019)

Detailed reference viewed: 126 (36 UL)
Full Text
Peer Reviewed
See detailWireless Multi-group Multicast Precoding with Selective RF Energy Harvesting
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

Scientific Conference (2019, September 05)

We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys ... [more ▼]

We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys information and/or energy to the groups of corresponding receivers using more than one multicast streams. The information specific users have conventional receiver architectures to process data, energy harvesting users collect energy using the non-linear energy harvesting module and each of the joint information decoding and energy harvesting capable user is assumed to employ the separated architecture with disparate non-linear energy harvesting and conventional information decoding units. In this context, we formulate and analyze the problem of total transmit power minimization for optimal precoder design subjected to minimum signal-to-interference-and-noise ratio and harvested energy demands at the respective users under three different scenarios. This problem is solved via semi-definite relaxation and the advantages of employing separate information and energy precoders are shown over joint and per-user information and energy precoder designs. Simulation results illustrate the benefits of proposed framework under several operating conditions and parameter values. [less ▲]

Detailed reference viewed: 113 (15 UL)
Full Text
Peer Reviewed
See detailOptimal Resource Allocation for NOMA-Enabled Cache Replacement and Content Delivery
Lei, Lei UL; Vu, Thang Xuan UL; Xiang, Lin UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2019) (2019, September)

Detailed reference viewed: 19 (0 UL)
Full Text
Peer Reviewed
See detailOn Fairness Optimization for NOMA-Enabled Multi-Beam Satellite Systems
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2019 (2019, September)

Detailed reference viewed: 55 (8 UL)
Full Text
Peer Reviewed
See detailLearning-Assisted Optimization for Energy-Efficient Scheduling in Deadline-Aware NOMA Systems
Lei, Lei UL; You, Lei; He, Qing et al

in IEEE Transactions on Green Communications and Networking (2019)

Detailed reference viewed: 25 (2 UL)
Full Text
Peer Reviewed
See detailOn the Use of Vertex-Frequency Analysis for Anomaly Detection in Graph Signals
Lewenfus, Gabriela; Alves Martins, Wallace UL; Chatzinotas, Symeon UL et al

in Anais do XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2019) (2019, September)

Detailed reference viewed: 63 (9 UL)
Full Text
Peer Reviewed
See detailLoad Coupling and Energy Optimization in Multi-Cell and Multi-Carrier NOMA Networks
Lei, Lei UL; You, Lei; Yang, Yang et al

in IEEE Transactions on Vehicular Technology (2019)

Detailed reference viewed: 100 (13 UL)
Full Text
Peer Reviewed
See detailLoad Coupling and Energy Optimization in Multi-Cell and Multi-Carrier NOMA Networks
Lei, Lei UL; You, Lei; Yang, Yang et al

in IEEE Transactions on Vehicular Technology (2019)

Detailed reference viewed: 100 (13 UL)
Full Text
Peer Reviewed
See detailJoint User Grouping and Power Allocation for MISO Systems: Learning to Schedule
Yuan, Yaxiong; Vu, Thang Xuan UL; Lei, Lei UL et al

in IEEE European Signal Processing Conference 2019 (2019, September)

Detailed reference viewed: 21 (4 UL)
Full Text
Peer Reviewed
See detailARCHITECTURES AND SYNCHRONIZATION TECHNIQUES FOR COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Merlano Duncan, Juan Carlos UL; Querol Borras, Jorge UL; Camps, Adriano et al

in 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2019, August 31)

Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field ... [more ▼]

Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field is very wide, and in some cases, the requirements of the proposed synchronization solution may surpass the ones set by the application itself. Moreover, the synchronization solution becomes even more challenging when the nodes are flying or hovering on aerial or space platforms. In this work, we compare and classify the synchronization technologies available in the literature according to a common proposed framework, and we discuss the considerations of an implementation for distributed remote sensing applications. The general framework considered is based on a distributed collection of autonomous nodes that try to synchronize their clocks with a common reference. Moreover, they can be classified in non-overlapping, adjacent and overlapping frequency band scenarios [less ▲]

Detailed reference viewed: 50 (4 UL)
Full Text
Peer Reviewed
See detailM-QAM Modulation Symbol-Level Precoding for Power Minimization: Closed-Form Solution
Krivochiza, Jevgenij UL; Merlano Duncan, Juan Carlos UL; Chatzinotas, Symeon UL et al

Scientific Conference (2019, August)

In this paper, we derive a closed-form algorithm of the computationally efficient Symbol-Level Precoding (SLP) for power efficient communications when using M-QAM modulated waveforms. The channel state ... [more ▼]

In this paper, we derive a closed-form algorithm of the computationally efficient Symbol-Level Precoding (SLP) for power efficient communications when using M-QAM modulated waveforms. The channel state information (CSI) based and data-aided SLP technique optimizes power efficiency by solving a non-negative convex quadratic optimization problem per time frame of transmitted symbols. The optimization combines constructive inter-user interference to minimize the sum power of precoded symbols at the transmitter side under constraints for minimum SNR at the receiver side. The SLP implementation incurs extra computational complexity of the transmitter. We propose a convex quadratic optimization problem for M-QAM constellations and derive a closed-form algorithm with a fixed number of iterations to solve the problem. [less ▲]

Detailed reference viewed: 60 (10 UL)
Full Text
Peer Reviewed
See detailDynamic RF Chain Selection for Energy Efficient and Low Complexity Hybrid Beamforming in Millimeter Wave MIMO Systems
Kaushik, Aryan; Thompson, John; Vlachos, Evangelos et al

in IEEE Transactions on Green Communications and Networking (2019)

This paper proposes a novel architecture with a framework that dynamically activates the optimal number of radio frequency (RF) chains used to implement hybrid beamforming in a millimeter wave (mmWave ... [more ▼]

This paper proposes a novel architecture with a framework that dynamically activates the optimal number of radio frequency (RF) chains used to implement hybrid beamforming in a millimeter wave (mmWave) multiple-input and multiple-output (MIMO) system. We use fractional programming to solve an energy efficiency maximization problem and exploit the Dinkelbach method (DM)-based framework to optimize the number of active RF chains and data streams. This solution is updated dynamically based on the current channel conditions, where the analog/digital (A/D) hybrid precoder and combiner matrices at the transmitter and the receiver, respectively, are designed using a codebook-based fast approximation solution called gradient pursuit (GP). The GP algorithm shows less run time and complexity while compared to the state-of-the-art orthogonal matching pursuit (OMP) solution. The energy and spectral efficiency performance of the proposed framework is compared with the existing state-of-the-art solutions, such as the brute force (BF), the digital beamformer, and the analog beamformer. The codebook-free approaches to design the precoders and combiners, such as alternating direction method of multipliers (ADMMs) and singular value decomposition (SVD)-based solution are also shown to be incorporated into the proposed framework to achieve better energy efficiency performance. [less ▲]