Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

Four-Dimensional Scaling of Dipole Polarizability in Quantum Systems Szabo, Peter ; Goger, Szabolcs ; Charry Martinez, Jorge Alfonso et al in Physical Review Letters (2022) Detailed reference viewed: 110 (10 UL)Multicomponent Quantum Mechanics/Molecular Mechanics Study of Hydrated Positronium ; ; Charry Martinez, Jorge Alfonso et al in Journal of Physical Chemistry B (2022), 126(14), 2699-2714 We propose a model for solvated positronium (Ps) atoms in water, based on the sequential quantum mechanics/molecular mechanics (s-QM/MM) protocol. We developed a Lennard-Jones force field to account for ... [more ▼] We propose a model for solvated positronium (Ps) atoms in water, based on the sequential quantum mechanics/molecular mechanics (s-QM/MM) protocol. We developed a Lennard-Jones force field to account for Ps–water interactions in the MM step. The repulsive term was obtained from a previously reported model for the solvated electron, while the dispersion constant was derived from the Slater–Kirkwood formula. The force field was employed in classical Monte Carlo (MC) simulations to generate Ps–solvent configurations in the NpT ensemble, while the quantum properties were computed with the any-particle molecular orbital method in the subsequent QM step. Our approach is general, as it can be applied to other liquids and materials. One basically needs to describe the solvated electron in the environment of interest to obtain the Ps solvation model. The thermodynamical properties computed from the MC simulations point out similarities between the solvation of Ps and noble gas atoms, hydrophobic solutes that form clathrate structures. We performed convergence tests for the QM step, with particular attention to the choice of basis set and expansion centers for the positronic and electronic subsystems. Our largest model was composed of the Ps atom and 22 water molecules in the QM region, corresponding to the first solvation shell, surrounded by 128 molecules described as point charges. The mean electronic and positronic vertical detachment energies were (4.73 ± 0.04) eV and (5.33 ± 0.04) eV, respectively. The latter estimates were computed with Koopmans’ theorem corrected by second-order self-energies, for a set of statistically uncorrelated MC configurations. While the Hartree–Fock wave functions do not properly account for the annihilation rates, they were useful for numerical tests, pointing out that annihilation is more sensitive to the choice of basis sets and expansion centers than the detachment energies. We further explored a model with reduced solute cavity size by changing the Ps–solvent force field. Although the pick-off annihilation lifetimes were affected by the cavity size, essentially the same conclusions were drawn from both models. [less ▲] Detailed reference viewed: 19 (1 UL)Correlated Wave Functions for Electron–Positron Interactions in Atoms and Molecules Charry Martinez, Jorge Alfonso ; Barborini, Matteo ; Tkatchenko, Alexandre in Journal of Chemical Theory and Computation (2022), 18(4), 22672280 The positron, as the antiparticle of the electron, can form metastable states with atoms and molecules before its annihilation with an electron. Such metastable matter–positron complexes are stabilized by ... [more ▼] The positron, as the antiparticle of the electron, can form metastable states with atoms and molecules before its annihilation with an electron. Such metastable matter–positron complexes are stabilized by a variety of mechanisms, which can have both covalent and noncovalent character. Specifically, electron–positron binding often involves strong many-body correlation effects, posing a substantial challenge for quantum-chemical methods based on atomic orbitals. Here we propose an accurate, efficient, and transferable variational ansatz based on a combination of electron–positron geminal orbitals and a Jastrow factor that explicitly includes the electron–positron correlations in the field of the nuclei, which are optimized at the level of variational Monte Carlo (VMC). We apply this approach in combination with diffusion Monte Carlo (DMC) to calculate binding energies for a positron e+ and a positronium Ps (the pseudoatomic electron–positron pair), bound to a set of atomic systems (H–, Li+, Li, Li–, Be+, Be, B–, C–, O– and F–). For PsB, PsC, PsO, and PsF, our VMC and DMC total energies are lower than that from previous calculations; hence, we redefine the state of the art for these systems. To assess our approach for molecules, we study the potential-energy surfaces (PES) of two hydrogen anions H– mediated by a positron (e+H22–), for which we calculate accurate spectroscopic properties by using a dense interpolation of the PES. We demonstrate the reliability and transferability of our correlated wave functions for electron–positron interactions with respect to state-of-the-art calculations reported in the literature. [less ▲] Detailed reference viewed: 93 (5 UL)The three-center two-positron bond Charry Martinez, Jorge Alfonso ; ; Barborini, Matteo et al in Chemical Science (2022) Computational studies have shown that one or more positrons can stabilize two repelling atomic anions through the formation of two-center positronic bonds. In the present work, we study the energetic ... [more ▼] Computational studies have shown that one or more positrons can stabilize two repelling atomic anions through the formation of two-center positronic bonds. In the present work, we study the energetic stability of a system containing two positrons and three hydride anions, namely 2e+[H3-3]. To this aim, we performed a preliminary scan of the potential energy surface of the system with both electrons and positron in a spin singlet state, with a multi-component MP2 method, that was further refined with variational and diffusion Monte Carlo calculations, and confirmed an equilibrium geometry with D3h symmetry. The local stability of 2e+[H3-3] is demonstrated by analyzing the vertical detachment and adiabatic energy dissociation channels. Bonding properties of the positronic compound, such as the equilibrium interatomic distances, force constants, dissociation energies, and bonding densities are compared with those of the purely electronic H+3 and Li+3 systems. Through this analysis, we find compelling similarities between the 2e+[H3-3] compound and the trilithium cation. Our results strongly point out the formation of a non-electronic three-center two-positron bond, analogous to the well-known three-center two-electron counterparts, which is fundamentally distinct from the two-center two-positron bond [D. Bressanini, J. Chem. Phys.155, 054306 (2021)], thus extending the concept of positron bonded molecules. [less ▲] Detailed reference viewed: 54 (2 UL) |
||