![]() Okutachi, Sunday Ojochegbe ![]() ![]() in Frontiers in Cell and Developmental Biology (2021) Detailed reference viewed: 128 (2 UL)![]() ; ; et al in ACS Omega (2020), 5(1), 832-842 Detailed reference viewed: 456 (24 UL)![]() ; Catillon, Marie ![]() ![]() in PLoS ONE (2017) Detailed reference viewed: 139 (5 UL)![]() ; ; et al in Journal of Proteome Research (2017), doi: 10.1021/acs.jproteome.7b00034 Detailed reference viewed: 141 (15 UL)![]() ; Catillon, Marie ![]() in PLoS ONE (2015) Detailed reference viewed: 162 (12 UL)![]() ; ; Catillon, Marie ![]() in FASEB Journal (2010), 24(1), 105-18 L-plastin, a conserved modular F-actin bundling protein, is ectopically expressed in tumor cells and contributes to cell malignancy and invasion. The underlying molecular mechanisms involved remain ... [more ▼] L-plastin, a conserved modular F-actin bundling protein, is ectopically expressed in tumor cells and contributes to cell malignancy and invasion. The underlying molecular mechanisms involved remain unclear, in part, because specific inhibitors of L-plastin are lacking. We used recombinant alpaca-derived L-plastin single-domain antibodies (nanobodies) as effector of L-plastin function in cells. [less ▲] Detailed reference viewed: 145 (1 UL)![]() ; Schaffner-Reckinger, Elisabeth ![]() ![]() in PloS one (2010), 5(2), 9210 BACKGROUND: Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers ... [more ▼] BACKGROUND: Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion. METHODOLOGY/PRINCIPAL FINDINGS: To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-delta isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process. CONCLUSIONS/SIGNIFICANCE: Altogether these findings quantitatively demonstrate for the first time that L-plastin contributes to the fine-tuning of actin turn-over, an activity which is regulated by Ser5 phosphorylation promoting its high affinity binding to the cytoskeleton. In carcinoma cells, PKC-delta signaling pathways appear to link L-plastin phosphorylation to actin polymerization and invasion. [less ▲] Detailed reference viewed: 198 (11 UL) |
||