References of "Cascio, Michele"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCoupled molecular-dynamics and finite-element-method simulations for the kinetics of particles subjected to field-mediated forces
Cascio, Michele; Baroli, Davide UL; Bordas, Stéphane UL et al

in Physical Review. E ,Statistical, Nonlinear, and Soft Matter Physics (2019), 99(6),

A computational approach that couples molecular-dynamics (MD) and the-finite-element-method (FEM) technique is here proposed for the theoretical study of the dynamics of particles subjected to ... [more ▼]

A computational approach that couples molecular-dynamics (MD) and the-finite-element-method (FEM) technique is here proposed for the theoretical study of the dynamics of particles subjected to electromechanical forces. The system consists of spherical particles (modeled as micrometric rigid bodies with proper densities and dielectric functions) suspended in a colloidal solution, which flows in a microfluidic channel in the presence of a generic nonuniform variable electric field generated by electrodes. The particles are subjected to external forces (e.g., drag or gravity) which satisfy a particlelike formulation that is typical of the MD approach, along with an electromechanical force that, in turn, requires the three-dimensional self-consistent solutions of correct continuum field equations during the integration of the equations of motion. In the MD-FEM method used in this work, the finite element method is applied to solve the continuum field equations while the MD technique is used for the stepwise explicit integration of the equations of motion. Our work shows the potential of coupled MD-FEM simulations for the study of electromechanical particles and opens a double perspective for implementing (a) MD away from the field of atomistic simulations and (b) the continuum-particle approach to cases where the conventional force evaluation used in MD is not applicable. [less ▲]

Detailed reference viewed: 25 (0 UL)
Full Text
Peer Reviewed
See detailCoupled Molecular Dynamics and Finite Element Method: simulations of kinetics induced by field mediated interaction
Cascio, Michele; Baroli, Davide UL; Deretzsis, Ioannis et al

in Physical Review. E : Statistical, Nonlinear, and Soft Matter Physics (n.d.)

A computational approach coupling Molecular Dynamics (MD)-Finite Element Method (FEM) techniques is here proposed for the theoretical study of the dynamics of particles subjected to the electromechanical ... [more ▼]

A computational approach coupling Molecular Dynamics (MD)-Finite Element Method (FEM) techniques is here proposed for the theoretical study of the dynamics of particles subjected to the electromechanical forces. The system consists in spherical particles (modeled as micrometric rigid bodies with proper densities and dielectric functions) suspended in a colloidal solution which flows in a microfluidic channel in the presence of a generic non-uniform variable electric field, generated by electrodes. The particles are subjected to external forces (e.g. drag or gravity) which satisfy the particle-like formulation, typical of the MD approach, and to electromechanical force which in turn needs, during the equation of the motion integration, the self-consistent solutions in three dimensions of correct continuum field equation. In the MD-FEM method used in this work, Finite Element Method is applied to solve the continuum field equation and MD technique is applied to the stepwise explicit integration of equation of the motion. Our work shows the potential of coupled MD-FEM for the study of electromechanical particles and opens the double perspective to use a) MD away from the field of the atomistic simulation and b) the continuum/particle approach to another case where the conventional forces’ evaluation method used in MD is not applicable. [less ▲]

Detailed reference viewed: 79 (3 UL)