![]() ; ; et al in Journal of Thrombosis and Haemostasis (2010), 8(12), 2766-74 BACKGROUND: The plasma membrane calcium ATPase (PMCA) regulates localized signaling events in a variety of cell types, although its functional role in platelets remains undefined. OBJECTIVES: To ... [more ▼] BACKGROUND: The plasma membrane calcium ATPase (PMCA) regulates localized signaling events in a variety of cell types, although its functional role in platelets remains undefined. OBJECTIVES: To investigate the role of PMCA in determining platelet intracellular calcium concentration ([Ca(2)(+) ](i) ) at rest and following agonist stimulation, and to define the corresponding effects upon different stages of platelet activation. METHODS: [Ca(2)(+) ](i) was continuously measured in Fura-2-loaded platelets and in vitro and in vivo functional analyses performed in the presence of the PMCA inhibitor carboxyeosin (CE). RESULTS: Concentrations of CE that selectively inhibited Ca(2)(+) extrusion through PMCA were established in human platelets. [Ca(2)(+) ](i) was elevated by CE in resting platelets, although collagen-stimulated Ca(2)(+) release was reduced. Impaired Ca(2)(+) mobilization upon agonist stimulation was accompanied by reduced dense granule secretion and impaired platelet aggregation. Platelet aggregation responses were also reduced in PMCA4(-/-) mice and in an in vivo mouse model of platelet thromboembolism. Conversely, inhibition of PMCA promoted the early and later stages of platelet activation, observed as enhanced adhesion to fibrinogen, and accelerated clot retraction. Investigations into the signaling mechanisms underlying CE-mediated inhibition of platelet aggregation implicated cGMP-independent vasodilator-stimulated phosphoprotein phosphorylation. CONCLUSIONS: Disruption of PMCA activity perturbs platelet Ca(2)(+) homeostasis and function in a time-dependent manner, demonstrating that PMCA differentially regulates Ca(2)(+) -dependent signaling events, and hence function, throughout the platelet activation process. [less ▲] Detailed reference viewed: 158 (2 UL)![]() ; ; et al in Biochemical Society transactions (2007), 35(Pt 5), 927-30 The PMCA (plasma-membrane Ca(2+)-ATPase) is a ubiquitously expressed calcium-extruding enzymatic pump important in the control of intracellular calcium concentration. Unlike in non-excitable cells, where ... [more ▼] The PMCA (plasma-membrane Ca(2+)-ATPase) is a ubiquitously expressed calcium-extruding enzymatic pump important in the control of intracellular calcium concentration. Unlike in non-excitable cells, where PMCA is the only system for calcium extrusion, in excitable cells, such as cardiomyocytes, PMCA has been shown to play only a minor role in calcium homoeostasis compared with the NCX (sodium/calcium exchanger), another system of calcium extrusion. However, increasing evidence points to an important role for PMCA in signal transduction; of particular interest in cardiac physiology is the modulation of nNOS (neuronal nitric oxide synthase) by isoform 4b of PMCA. In the present paper, we will discuss recent advances that support a key role for PMCA4 in modulating the nitric oxide signalling pathway in the heart. [less ▲] Detailed reference viewed: 127 (0 UL) |
||