References of "Campoy, Pascual"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFast and Robust Flight Altitude Estimation of Multirotor UAVs in Dynamic Unstructured Environments Using 3D Point Cloud Sensors
Bavle, Hriday UL; Sanchez Lopez, Jose Luis UL; de la Puente, Paloma et al

in Aerospace (2018), 5(3),

This paper presents a fast and robust approach for estimating the flight altitude of multirotor Unmanned Aerial Vehicles (UAVs) using 3D point cloud sensors in cluttered, unstructured, and dynamic indoor ... [more ▼]

This paper presents a fast and robust approach for estimating the flight altitude of multirotor Unmanned Aerial Vehicles (UAVs) using 3D point cloud sensors in cluttered, unstructured, and dynamic indoor environments. The objective is to present a flight altitude estimation algorithm, replacing the conventional sensors such as laser altimeters, barometers, or accelerometers, which have several limitations when used individually. Our proposed algorithm includes two stages: in the first stage, a fast clustering of the measured 3D point cloud data is performed, along with the segmentation of the clustered data into horizontal planes. In the second stage, these segmented horizontal planes are mapped based on the vertical distance with respect to the point cloud sensor frame of reference, in order to provide a robust flight altitude estimation even in presence of several static as well as dynamic ground obstacles. We validate our approach using the IROS 2011 Kinect dataset available in the literature, estimating the altitude of the RGB-D camera using the provided 3D point clouds. We further validate our approach using a point cloud sensor on board a UAV, by means of several autonomous real flights, closing its altitude control loop using the flight altitude estimated by our proposed method, in presence of several different static as well as dynamic ground obstacles. In addition, the implementation of our approach has been integrated in our open-source software framework for aerial robotics called Aerostack. [less ▲]

Detailed reference viewed: 124 (7 UL)
Full Text
Peer Reviewed
See detailA Multi-Layered Component-Based Approach for the Development of Aerial Robotic Systems: The Aerostack Framework
Sanchez Lopez, Jose Luis UL; Molina, Martin; Bavle, Hriday et al

in Journal of Intelligent and Robotic Systems (2017), 88(2), 638-709

To achieve fully autonomous operation for Unmanned Aerial Systems (UAS) it is necessary to integrate multiple and heterogeneous technical solutions (e.g., control-based methods, computer vision methods ... [more ▼]

To achieve fully autonomous operation for Unmanned Aerial Systems (UAS) it is necessary to integrate multiple and heterogeneous technical solutions (e.g., control-based methods, computer vision methods, automated planning, coordination algorithms, etc.). The combination of such methods in an operational system is a technical challenge that requires efficient architectural solutions. In a robotic engineering context, where productivity is important, it is also important to minimize the effort for the development of new systems. As a response to these needs, this paper presents Aerostack, an open-source software framework for the development of aerial robotic systems. This framework facilitates the creation of UAS by providing a set of reusable components specialized in functional tasks of aerial robotics (trajectory planning, self localization, etc.) together with an integration method in a multi-layered cognitive architecture based on five layers: reactive, executive, deliberative, reflective and social. Compared to other software frameworks for UAS, Aerostack can provide higher degrees of autonomy and it is more versatile to be applied to different types of hardware (aerial platforms and sensors) and different types of missions (e.g. multi robot swarm systems). Aerostack has been validated during four years (since February 2013) by its successful use on many research projects, international competitions and public exhibitions. As a representative example of system development, this paper also presents how Aerostack was used to develop a system for a (fictional) fully autonomous indoors search and rescue mission. [less ▲]

Detailed reference viewed: 60 (1 UL)
Full Text
Peer Reviewed
See detailHuman-Robot Cooperation in Surface Inspection Aerial Missions
Molina, Martin; Frau, Pedro; Maraval, Dario et al

Scientific Conference (2017, September 21)

The goal of the work presented in this paper is to facilitate the cooperation between human opera- tors and aerial robots to perform surface inspec- tion missions. Our approach is based on a model of ... [more ▼]

The goal of the work presented in this paper is to facilitate the cooperation between human opera- tors and aerial robots to perform surface inspec- tion missions. Our approach is based on a model of human collaborative control with a mixed ini- tiative interaction. In the paper, we present our human-robot cooperation model based on the combination of a supervisory mode and an as- sistance mode with a set of interaction patterns. We developed a software system implementing this interaction model and carried out several real flight experiments that proved that this ap- proach can be used in aerial robotics for sur- face inspection missions (e.g., in vision based indoor missions). Compared to a conventional tele-operated inspection system, the solution pre- sented in this paper gives more autonomy to the aerial systems, reducing the cognitive load of the operator during the mission development. [less ▲]

Detailed reference viewed: 51 (6 UL)
Full Text
Peer Reviewed
See detailVisual Marker based Multi-Sensor Fusion State Estimation
Sanchez Lopez, Jose Luis UL; Arellano-Quintana, Victor; Tognon, Marco et al

in IFAC-PapersOnLine (2017, July), 50(1), 16003-16008

Detailed reference viewed: 15 (0 UL)
Full Text
Peer Reviewed
See detailA fully-autonomous aerial robotic solution for the 2016 International Micro Air Vehicle competition
Sampedro, Carlos; Bavle, Hriday; Rodríguez-Ramos, Alejandro et al

in 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (2017, June)

Detailed reference viewed: 24 (0 UL)
Full Text
Peer Reviewed
See detailA robust real-time path planner for the collision-free navigation of multirotor aerial robots in dynamic environments
Sanchez Lopez, Jose Luis UL; Pestana, Puerta; Campoy, Pascual

in 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (2017, June)

Detailed reference viewed: 22 (1 UL)
Full Text
Peer Reviewed
See detailA flight altitude estimator for multirotor UAVs in dynamic and unstructured indoor environments
Bavle, Hriday; Sanchez Lopez, Jose Luis UL; Rodriguez-Ramos, Alejandro et al

in 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (2017, June)

Detailed reference viewed: 35 (0 UL)
Full Text
Peer Reviewed
See detailA reliable open-source system architecture for the fast designing and prototyping of autonomous multi-uav systems: Simulation and experimentation
Sanchez Lopez, Jose Luis UL; Pestana, Jesus; De La Puente, Paloma et al

in Journal of Intelligent and Robotic Systems (2016), 84(1-4), 779-797

During the process of design and development of an autonomous Multi-UAV System, two main problems appear. The first one is the difficulty of designing all the modules and behaviors of the aerial multi ... [more ▼]

During the process of design and development of an autonomous Multi-UAV System, two main problems appear. The first one is the difficulty of designing all the modules and behaviors of the aerial multi-robot system. The second one is the difficulty of having an autonomous prototype of the system for the developers that allows to test the performance of each module even in an early stage of the project. These two problems motivate this paper. A multipurpose system architecture for autonomous multi-UAV platforms is presented. This versatile system architecture can be used by the system designers as a template when developing their own systems. The proposed system architecture is general enough to be used in a wide range of applications, as demonstrated in the paper. This system architecture aims to be a reference for all designers. Additionally, to allow for the fast prototyping of autonomous multi-aerial systems, an Open Source framework based on the previously defined system architecture is introduced. It allows developers to have a flight proven multi-aerial system ready to use, so that they can test their algorithms even in an early stage of the project. The implementation of this framework, introduced in the paper with the name of ``CVG Quadrotor Swarm'', which has also the advantages of being modular and compatible with different aerial platforms, can be found at \url{https://github.com/Vision4UAV/cvg_quadrotor_swarm} with a consistent catalog of available modules. The good performance of this framework is demonstrated in the paper by choosing a basic instance of it and carrying out simulation and experimental tests whose results are summarized and discussed in this paper. [less ▲]

Detailed reference viewed: 32 (0 UL)
Full Text
Peer Reviewed
See detailA vision-based quadrotor multi-robot solution for the indoor autonomy challenge of the 2013 international micro air vehicle competition
Pestana, Jesus; Sanchez Lopez, Jose Luis UL; De La Puente, Paloma et al

in Journal of Intelligent and Robotic Systems (2016), 84(1-4), 601--620

This paper presents a completely autonomous solution to participate in the 2013 International Micro Air Vehicle Indoor Flight Competition ({IMAV2013}). Our proposal is a modular multi-robot swarm ... [more ▼]

This paper presents a completely autonomous solution to participate in the 2013 International Micro Air Vehicle Indoor Flight Competition ({IMAV2013}). Our proposal is a modular multi-robot swarm architecture, based on the Robot Operating System (ROS) software framework, where the only information shared among swarm agents is each robot's position. Each swarm agent consists of an {AR Drone 2.0} quadrotor connected to a laptop which runs the software architecture. In order to present a completely visual-based solution the localization problem is simplified by the usage of ArUco visual markers. These visual markers are used to sense and map obstacles and to improve the pose estimation based on the IMU and optical data flow by means of an Extended Kalman Filter localization and mapping method. The presented solution and the performance of the CVG\_UPM team were awarded with the First Prize in the Indoors Autonomy Challenge of the {IMAV2013} competition. [less ▲]

Detailed reference viewed: 16 (0 UL)
Full Text
Peer Reviewed
See detailUBRISTES: UAV-based building rehabilitation with visible and thermal infrared remote sensing
Carrio, Adrian; Pestana, Jesus; Sanchez Lopez, Jose Luis UL et al

in Robot 2015: Second Iberian Robotics Conference (2016, November)

Detailed reference viewed: 15 (0 UL)
Full Text
Peer Reviewed
See detailSpecifying complex missions for aerial robotics in dynamic environments
Molina, Martin; Diaz-Moreno, Adrian; Palacios, David et al

Scientific Conference (2016, October)

Detailed reference viewed: 8 (0 UL)
Full Text
Peer Reviewed
See detailAEROSTACK: An architecture and open-source software framework for aerial robotics
Sanchez Lopez, Jose Luis UL; Suárez Fernández, Ramon; Bavle, Hriday et al

in 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (2016, June)

Detailed reference viewed: 16 (1 UL)
Full Text
Peer Reviewed
See detailA flexible and dynamic mission planning architecture for UAV swarm coordination
Sampedro, Carlos; Bavle, Hriday; Sanchez Lopez, Jose Luis UL et al

in 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (2016, June)

Detailed reference viewed: 9 (0 UL)
Full Text
Peer Reviewed
See detailNatural user interfaces for human-drone multi-modal interaction
Suárez Fernández, Ramon; Sanchez Lopez, Jose Luis UL; Sampedro, Carlos et al

in 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (2016, June)

Detailed reference viewed: 28 (0 UL)
Full Text
Peer Reviewed
See detailHistorical evolution of the unmanned aerial vehicles to the present
Cuerno-Rejado, Cristina; Garcia-Hernandez, Luis; Sanchez-Carmona, Alejandro et al

in Dyna (2016), 91(3), 282--288

Detailed reference viewed: 10 (0 UL)
Full Text
Peer Reviewed
See detailVision-Based Steering Control, Speed Assistance and Localization for Inner-CityVehicles
Olivares Mendez, Miguel Angel UL; Sanchez Lopez, Jose Luis UL; Jimenez, Felipe et al

in Sensors (2016), 16(3), 362

Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors ... [more ▼]

Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem. This work proposes the use of a single monocular camera sensor for an automatic steering control, speed assistance for the driver and localization of the vehicle on a road. Herein, we assume that the vehicle is mainly traveling along a predefined path, such as in public transport. A computer vision approach is presented to detect a line painted on the road, which defines the path to follow. Visual markers with a special design painted on the road provide information to localize the vehicle and to assist in its speed control. Furthermore, a vision-based control system, which keeps the vehicle on the predefined path under inner-city speed constraints, is also presented. Real driving tests with a commercial car on a closed circuit finally prove the applicability of the derived approach. In these tests, the car reached a maximum speed of 48 km/h and successfully traveled a distance of 7 km without the intervention of a human driver and any interruption. [less ▲]

Detailed reference viewed: 434 (35 UL)
Full Text
Peer Reviewed
See detailTowards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers
Olivares Mendez, Miguel Angel UL; Fu, Changhong; Ludivig, Philippe et al

in Sensors (2015), 15(12), 29861

Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources ... [more ▼]

Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing. [less ▲]

Detailed reference viewed: 250 (46 UL)
Full Text
Peer Reviewed
See detailFuseon: A low-cost portable multi sensor fusion research testbed for robotics
Sanchez Lopez, Jose Luis UL; Fu, Changhong; Campoy, Pascual

in Robot 2015: Second Iberian Robotics Conference (2015, November)

Detailed reference viewed: 16 (1 UL)
Full Text
Peer Reviewed
See detailAutomated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection
Carrio, Adrian; Sampedro, Carlos; Sanchez Lopez, Jose Luis UL et al

in Sensors (2015), 15(11), 29569--29593

Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator ... [more ▼]

Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results. [less ▲]

Detailed reference viewed: 33 (0 UL)
Full Text
Peer Reviewed
See detailVision Based Fuzzy Control Approaches for Unmanned Aerial Vehicles
Olivares Mendez, Miguel Angel UL; Campoy, Pascual

in 16th World Congress of the International Fuzzy Systems Association (IFSA) 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) (2015, July)

This paper proposed the use of vision based Fuzzy control approaches for autonomous navigation tasks with Unmanned Aerial Vehicles (UAVs). It is shown the advantages of using RGB cameras as the sensor ... [more ▼]

This paper proposed the use of vision based Fuzzy control approaches for autonomous navigation tasks with Unmanned Aerial Vehicles (UAVs). It is shown the advantages of using RGB cameras as the sensor onboard UAVs and the advantages of using Fuzzy logic controllers. It is explained how to set a vision based system and how to define a Fuzzy controller for a general control approach. A specific software was design and used to develop and tune general Fuzzy control approaches. The “how-to” of this software is also explained in this paper. A methodology to how to design, developed and tune Vision based Fuzzy Control (VBFC) approaches in robotics is also presented. Furthermore, it is shown three different VBFC approaches for autonomous navigation developed using this methodology and software. Real experiments were done to validate the different approaches with different vertical takeoff and landing (VTOL) UAVs. [less ▲]

Detailed reference viewed: 173 (13 UL)