References of "Calzada-Diaz, Abigail"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBUILDING A PIECE OF THE MOON: CONSTRUCTION OF TWO INDOOR LUNAR ANALOGUE ENVIRONMENTS
Ludivig, Philippe UL; Calzada-Diaz, Abigail; Olivares Mendez, Miguel Angel UL et al

in Proceedings of the 71st International Astronautical Congress 2020 (2020, October 12)

Developing and testing autonomous systems to ensure that they work reliably on the moon is a difficult task, as testing on location is not an option. Instead, engineers rely on simulations, testing ... [more ▼]

Developing and testing autonomous systems to ensure that they work reliably on the moon is a difficult task, as testing on location is not an option. Instead, engineers rely on simulations, testing facilities and outdoor lunar analogues. Due to the lack of lunar analogue testing facilities in Europe, ispace Europe and the University of Luxembourg have teamed up to build two of these facilities with the goal of designing new vision-based navigation systems. These systems will enable autonomous long-range traverses for lunar rovers. These two facilities have a surface area of 64 and 77 square meters, respectively. Regarding the type of testing needed for vision-based systems, the optical fidelity of the environment has been considered as the most important factor. Thus, different types of Basalt have been used for the two facilities to create a larger number of possible landscapes, such as craters, hills, rocky areas and smooth planar surfaces. Regolith simulant was also considered but, due to the health restrictions and the cost factor, basalt was selected instead. As a result, this has allowed for larger testing areas. The illumination setup has been designed to simulate the highland regions of the Moon, with a single light source positioned low above the horizon, casting long shadows over the entire area. To mitigate problems with feature detection algorithms picking up features at the edge of the facility, the walls have been painted black. This also produces high contrast shadows, which is exactly what makes vision-based navigation challenging in the polar regions. The outcome of this research is a set of lessons learned which will enable other researchers to replicate similar facilities and to reproduce the same fidelity in indoor testing for future vision-based navigation systems. [less ▲]

Detailed reference viewed: 59 (15 UL)