References of "Buttini, Manuel 50001146"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSingle-cell transcriptional profiling and gene regulatory network modeling in Tg2576 mice reveal gender-dependent molecular features preceding Alzheimer-like pathologies
Ali, Muhammad UL; Huarte, Oihane; Heurtaux, Tony UL et al

in Molecular Neurobiology (2022), in press (doi:10.1007/s12035-022-02985-2)(in press),

Alzheimer’s disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both ... [more ▼]

Alzheimer’s disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both in the relative risk of developing AD and in clinical disease manifestations. A molecular level understanding of these gender disparities is still missing, but could provide important clues on cellular mechanisms modulating the disease and reveal new targets for gender-oriented disease-modifying precision therapies. We therefore present here a comprehensive single-cell analysis of disease-associated molecular gender differences in transcriptomics data from the neocortex, one of the brain regions most susceptible to AD, in one of the most widely used AD mouse models, the Tg2576 model. Cortical areas are also most commonly used in studies of post-mortem AD brains. To identify disease-linked molecular processes that occur before the onset of detectable neuropathology, we focused our analyses on an age with no detectable plaques and microgliosis. Cell-type specific alterations were investigated at the level of individual genes, pathways, and gene regulatory networks. The number of differentially expressed genes (DEGs) was not large enough to build context-specific gene regulatory networks for each individual cell type, and thus, we focused on the study of cell types with dominant changes and included analyses of changes across the combination of cell types. We observed significant disease-associated gender differences in cellular processes related to synapse organization and axonogenesis, and identified a limited set of transcription factors, including Egr1 and Klf6, as key regulators of many of the disease-associated and gender-dependent gene expression changes in the model. Overall, our analyses revealed significant celltype-specific gene expression changes in individual genes, pathways and subnetworks, including gender-specific and gender-dimorphic changes in both upstream transcription factors and their downstream targets, in the Tg2576 AD model before the onset of overt disease. This opens a window into molecular events that could determine gender-susceptibility to AD, and uncovers tractable target candidates for potential gender-specific precision medicine for AD. [less ▲]

Detailed reference viewed: 100 (6 UL)
Full Text
Peer Reviewed
See detailNeurodegeneration and neuroinflammation are linked, but independent of a-synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease
Garcia, Pierre UL; Wemheuer, W.; Uriarte, O. et al

in Glia (2022)

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other ... [more ▼]

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α-syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α-syn induced by striatal injection of α-syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α-syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α-syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α-syn inclusion formation is not the major driver in the early phases of PD-like neurodegeneration, but that microglia, activated by diffusible, oligomeric α-syn, may play a key role in this process. Our findings uncover new features of α-syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α-syn spreading. [less ▲]

Detailed reference viewed: 173 (23 UL)
Full Text
See detailAn archaeal compound as a driver of Parkinson’s disease pathogenesis
Trezzi, Jean-Pierre; Aho, Velma UL; Jäger, Christian UL et al

E-print/Working paper (2022)

Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial ... [more ▼]

Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial taxa, changes to viral and archaeal populations have also been observed. Mechanistic links between gut microbes and PD pathogenesis remain elusive but could involve molecules that promote α-synuclein aggregation. Here, we show that 2-hydroxypyridine (2-HP) represents a key molecule for the pathogenesis of PD. We observe significantly elevated 2-HP levels in faecal samples from patients with PD or its prodrome, idiopathic REM sleep behaviour disorder (iRBD), compared to healthy controls. 2-HP is correlated with the archaeal species Methanobrevibacter smithii and with genes involved in methane metabolism, and it is detectable in isolate cultures of M. smithii. We demonstrate that 2-HP is selectively toxic to transgenic α-synuclein overexpressing yeast and increases α-synuclein aggregation in a yeast model as well as in human induced pluripotent stem cell derived enteric neurons. It also exacerbates PD-related motor symptoms, α-synuclein aggregation, and striatal degeneration when injected intrastriatally in transgenic mice overexpressing human α-synuclein. Our results highlight the effect of an archaeal molecule in relation to the gut-brain axis, which is critical for the diagnosis, prognosis, and treatment of PD. [less ▲]

Detailed reference viewed: 133 (12 UL)
Full Text
Peer Reviewed
See detailSingle‑nuclei chromatin profiling of ventral midbrain reveals cell identity transcription factors and cell‑type‑specific gene regulatory variation
Gui, Yujuan; Grzyb, Kamil UL; Thomas, Melanie UL et al

in Epigenetics and Chromatin (2021)

Background: Cell types in ventral midbrain are involved in diseases with variable genetic susceptibility, such as Parkinson’s disease and schizophrenia. Many genetic variants affect regulatory regions and ... [more ▼]

Background: Cell types in ventral midbrain are involved in diseases with variable genetic susceptibility, such as Parkinson’s disease and schizophrenia. Many genetic variants affect regulatory regions and alter gene expression in a cell-type-specific manner depending on the chromatin structure and accessibility. Results: We report 20,658 single-nuclei chromatin accessibility profiles of ventral midbrain from two genetically and phenotypically distinct mouse strains. We distinguish ten cell types based on chromatin profiles and analysis of accessible regions controlling cell identity genes highlights cell-type-specific key transcription factors. Regulatory variation segregating the mouse strains manifests more on transcriptome than chromatin level. However, cell-type-level data reveals changes not captured at tissue level. To discover the scope and cell-type specificity of cis-acting variation in midbrain gene expression, we identify putative regulatory variants and show them to be enriched at differentially expressed loci. Finally, we find TCF7L2 to mediate trans-acting variation selectively in midbrain neurons. Conclusions: Our data set provides an extensive resource to study gene regulation in mesencephalon and provides insights into control of cell identity in the midbrain and identifies cell-type-specific regulatory variation possibly underlying phenotypic and behavioural differences between mouse strains. [less ▲]

Detailed reference viewed: 120 (14 UL)
Full Text
Peer Reviewed
See detailQuantitative trait locus mapping identifies a locus linked to striatal dopamine and points to collagen IV alpha-6 chain as a novel regulator of striatal axonal branching in mice
Thomas, Melanie UL; Gui, Yujuan; Garcia, Pierre UL et al

in Genes, Brain, and Behavior (2021)

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to ... [more ▼]

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to loss of striatal dopamine (DA). Here, we measured DA concentration in the dorsal striatum of 32 members of Collaborative Cross (CC) family and their eight founder strains. Striatal DA varied greatly in founders, and differences were highly heritable in the inbred CC progeny. We identified a locus, containing 164 genes, linked to DA concentration in the dorsal striatum on chromosome X. We used RNAseq profiling of the ventral midbrain of two founders with substantial difference in striatal DA–C56BL/6 J and A/J—to highlight potential protein-coding candidates modulating this trait. Among the five differentially expressed genes within the locus, we found that the gene coding for the collagen IV alpha 6 chain (Col4a6) was expressed nine times less in A/J than in C57BL/6J. Using single cell RNA-seq data from developing human midbrain, we found that COL4A6 is highly expressed in radial glia-like cells and neuronal progenitors, indicating a role in neuronal development. Collagen IV alpha-6 chain (COL4A6) controls axogenesis in simple model organisms. Consistent with these findings, A/J mice had less striatal axonal branching than C57BL/6J mice. We tentatively conclude that DA concentration and axonal branching in dorsal striatum are modulated by COL4A6, possibly during development. Our study shows that genetic mapping based on an easily measured Central Nervous System (CNS) trait, using the CC population, combined with follow-up observations, can parse heritability of such a trait, and nominate novel functions for commonly expressed proteins. [less ▲]

Detailed reference viewed: 50 (7 UL)
Full Text
Peer Reviewed
See detailPituitary Tumor Transforming Gene 1 Orchestrates Gene Regulatory Variation in Mouse Ventral Midbrain During Aging
Gui, Yujuan UL; Thomas, Mélanie H.; Garcia, Pierre et al

in Frontiers in Genetics (2020)

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson’s disease and schizophrenia. Genetic variation between individuals can affect the integrity ... [more ▼]

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson’s disease and schizophrenia. Genetic variation between individuals can affect the integrity and function of dopaminergic neurons but the DNA variants and molecular cascades modulating dopaminergic neurons and other cells types of ventral midbrain remain poorly defined. Three genetically diverse inbred mouse strains – C57BL/6J, A/J, and DBA/2J – differ significantly in their genomes (∼7 million variants), motor and cognitive behavior, and susceptibility to neurotoxins. To further dissect the underlying molecular networks responsible for these variable phenotypes, we generated RNA-seq and ChIP-seq data from ventral midbrains of the 3 mouse strains. We defined 1000–1200 transcripts that are differentially expressed among them. These widespread differences may be due to altered activity or expression of upstream transcription factors. Interestingly, transcription factors were significantly underrepresented among the differentially expressed genes, and only one transcription factor, Pttg1, showed significant differences between all three strains. The changes in Pttg1 expression were accompanied by consistent alterations in histone H3 lysine 4 trimethylation at Pttg1 transcription start site. The ventral midbrain transcriptome of 3-month-old C57BL/6J congenic Pttg1–/– mutants was only modestly altered, but shifted toward that of A/J and DBA/2J in 9-month-old mice. Principle component analysis (PCA) identified the genes underlying the transcriptome shift and deconvolution of these bulk RNA-seq changes using midbrain single cell RNA-seq data suggested that the changes were occurring in several different cell types, including neurons, oligodendrocytes, and astrocytes. Taken together, our results show that Pttg1 contributes to gene regulatory variation between mouse strains and influences mouse midbrain transcriptome during aging. [less ▲]

Detailed reference viewed: 147 (22 UL)
Full Text
Peer Reviewed
See detailTranscriptome profiling data reveals Ubiquitin-Specific Peptidase 9 knockdown effects
Glaab, Enrico UL; Antony, Paul UL; Köglsberger, Sandra et al

in Data in Brief (2019), 25(1), 104130

Ubiquitin specific peptidase 9 (USP9) is a deubiquitinase encoded by a sex-linked gene with a Y-chromosomal form (USP9Y) and an X-chromosomal form (USP9X) that escapes X-inactivation. Since USP9 is a key ... [more ▼]

Ubiquitin specific peptidase 9 (USP9) is a deubiquitinase encoded by a sex-linked gene with a Y-chromosomal form (USP9Y) and an X-chromosomal form (USP9X) that escapes X-inactivation. Since USP9 is a key regulatory gene with sex-linked expression in the human brain, the gene may be of interest for researchers studying molecular gender differences and ubiquitin signaling in the brain. To assess the downstream effects of knocking down USP9X and USP9Y on a transcriptome-wide scale, we have conducted microarray profiling experiments using the human DU145 prostate cancer cell culture model, after confirming the robust expression of both USP9X and USP9Y in this model. By designing shRNA constructs for the specific knockdown of USP9X and the joint knockdown of USP9X and USP9Y, we have compared gene expression changes in both knockdowns to control conditions to infer potential shared and X- or Y-form specific alterations. Here, we provide details of the corresponding microarray profiling data, which has been deposited in the Gene Expression Omnibus database (GEO series accession number GSE79376). A biological interpretation of the data in the context of a potential involvement of USP9 in Alzheimer’s disease has previously been presented in Köglsberger et al. (2016). To facilitate the re-use and re-analysis of the data for other applications, e.g. the study of ubiquitin signaling and protein turnover control, and the regulation of molecular gender differences in the human brain and brain-related disorders, we provide a more in-depth discussion of the data properties, specifications and possible use cases. [less ▲]

Detailed reference viewed: 160 (3 UL)
Full Text
Peer Reviewed
See detailGender-specific expression of ubiquitin-specific peptidase 9 modulates tau expression and phosphorylation: possible implications for tauopathies
Köglsberger, Sandra UL; Cordero Maldonado, Maria Lorena UL; Antony, Paul UL et al

in Molecular Neurobiology (2017), 54(10), 79797993

Public transcriptomics studies have shown that several genes display pronounced gender differences in their expression in the human brain, which may influence the manifestations and risk for neuronal ... [more ▼]

Public transcriptomics studies have shown that several genes display pronounced gender differences in their expression in the human brain, which may influence the manifestations and risk for neuronal disorders. Here we apply a transcriptome-wide analysis to discover genes with gender-specific expression and significant alterations in public post mortem brain tissue from Alzheimer’s disease (AD) patients compared to controls. We identify the sex-linked ubiquitin specific peptidase 9 (USP9) as an outstanding candidate gene with highly significant expression differences between the genders and male-specific under-expression in AD. Since previous studies have shown that USP9 can modulate the phosphorylation of the AD-associated protein MAPT, we investigate functional associations between USP9 and MAPT in further detail. After observing a high positive correlation between the expression of USP9 and MAPT in the public transcriptomics data, we show that USP9 knockdown results in significantly decreased MAPT expression in a DU145 cell culture model and a concentration-dependent decrease for the MAPT orthologs mapta and maptb in a zebrafish model. From the analysis of microarray and qRT-PCR experiments for the knockdown in DU145 cells and prior knowledge from the literature, we derive a data-congruent model for a USP9-dependent regulatory mechanism modulating MAPT expression via BACH1 and SMAD4. Overall, the analyses suggest USP9 may contribute to molecular gender differences observed in tauopathies and provide a new target for intervention strategies to modulate MAPT expression. [less ▲]

Detailed reference viewed: 436 (35 UL)
Full Text
Peer Reviewed
See detailAbsence of regulator of G-protein signaling 4 does not protect against dopamine neuron dysfunction and injury in the mouse 6-hydroxydopamine lesion model of Parkinson's disease
Ashrafi, Amer UL; Garcia, Pierre UL; Kollmus, Heike et al

in Neurobiology of Aging (2017), 58

Regulator of G-Protein Signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy ... [more ▼]

Regulator of G-Protein Signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy and Parkinson’s disease (PD). In the case of PD, the main current option for alleviating motor symptoms are dopamine replacement therapies, which have limitations because of side effects, and reduced effectiveness over the long term. Research on new non-dopaminergic PD drug targets has indicated that inhibition of RGS4 could be an effective adjuvant treatment option. The effectiveness of RGS4 inhibition for an array of PD-linked functional and structural neuroprotection endpoints has not yet been demonstrated. Here, we use the 6-Hydroxydopamine (6-OHDA) lesioning model of the nigrostriatal pathway in mice to address this question. We observe, using a battery of behavioral and pathological measures, that mice deficient for RGS4 are not protected from 6-OHDA induced injury, and show enhanced susceptibility in some measures of motor function. Our results suggest that inhibition of RGS4 as a non-dopaminergic target for PD should be approached with caution. [less ▲]

Detailed reference viewed: 284 (34 UL)
Full Text
Peer Reviewed
See detailExploring therapeutic viability of a non-dopaminergic target for Parkinson’s disease
Ashrafi, Amer; Buttini, Manuel UL; Garcia, Pierre UL et al

in Movement Disorders (2016), 31(2), 630

Detailed reference viewed: 77 (3 UL)
Peer Reviewed
See detailMetabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry: Metabolic Profiling of Neurotransmitters by GC-MS
Jäger, Christian UL; Hiller, Karsten UL; Buttini, Manuel UL

in Auwerx, Johan; Ackerman, Susan L.; Brown, Stephen D. (Eds.) et al Current Protocols in Mouse Biology (2016)

Detailed reference viewed: 181 (11 UL)
Full Text
Peer Reviewed
See detailThe Mouse Brain Metabolome: Region-Specific Signatures and Response to Excitotoxic Neuronal Injury
Jäger, Christian UL; Glaab, Enrico UL; Michelucci, Alessandro UL et al

in American Journal of Pathology (2015), 185(6), 1699-1712

Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems' analyses, or omics approaches, have become an important tool in characterizing ... [more ▼]

Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems' analyses, or omics approaches, have become an important tool in characterizing this process. Although RNA and protein profiling made their entry into this field a couple of decades ago, metabolite profiling is a more recent addition. The metabolome represents a large part or all metabolites in a tissue, and gives a snapshot of its physiology. By using gas chromatography coupled to mass spectrometry, we analyzed the metabolic profile of brain regions of the mouse, and found that each region is characterized by its own metabolic signature. We then analyzed the metabolic profile of the mouse brain after excitotoxic injury, a mechanism of neurodegeneration implicated in numerous neurological diseases. More important, we validated our findings by measuring, histologically and molecularly, actual neurodegeneration and glial response. We found that a specific global metabolic signature, best revealed by machine learning algorithms, rather than individual metabolites, was the most robust correlate of neuronal injury and the accompanying gliosis, and this signature could serve as a global biomarker for neurodegeneration. We also observed that brain lesioning induced several metabolites with neuroprotective properties. Our results deepen the understanding of metabolic changes accompanying neurodegeneration in disease models, and could help rapidly evaluate these changes in preclinical drug studies. [less ▲]

Detailed reference viewed: 349 (97 UL)
Full Text
Peer Reviewed
See detailIntegrating Pathways of Parkinson's Disease in a Molecular Interaction Map
Fujita, Kazuhiro A.; Ostaszewski, Marek UL; Matsuoka, Yukiko et al

in Molecular Neurobiology (2014)

Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is ... [more ▼]

Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a computationally tractable, comprehensive molecular interaction map of PD. This map integrates pathways implicated in PD pathogenesis such as synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and neuroinflammation. We also present bioinformatics tools for the analysis, enrichment and annotation of the map, allowing the research community to open new avenues in PD research. The PD map is accessible at http://minerva.uni.lu/pd_map . [less ▲]

Detailed reference viewed: 552 (42 UL)
Full Text
Peer Reviewed
See detailImmune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
Michelucci, Alessandro UL; Cordes, Thekla UL; Ghelfi, Jenny UL et al

in Proceedings of the National Academy of Sciences of the United States of America (2013)

Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an ... [more ▼]

Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. [less ▲]

Detailed reference viewed: 549 (133 UL)
Full Text
Peer Reviewed
See detailThe Parkinson's Disease Map: A Framework for Integration, Curation and Exploration of Disease-related Pathways
Ostaszewski, Marek UL; Fujita, Kazuhiro; Matsuoka, Yukiko et al

Poster (2013, March 09)

Objectives: The pathogenesis of Parkinson's Disease (PD) is multi-factorial and age-related, implicating various genetic and environmental factors. It becomes increasingly important to develop new ... [more ▼]

Objectives: The pathogenesis of Parkinson's Disease (PD) is multi-factorial and age-related, implicating various genetic and environmental factors. It becomes increasingly important to develop new approaches to organize and explore the exploding knowledge of this field. Methods: The published knowledge on pathways implicated in PD, such as synaptic and mitochondrial dysfunction, alpha-synuclein pathobiology, failure of protein degradation systems and neuroinflammation has been organized and represented using CellDesigner. This repository has been linked to a framework of bioinformatics tools including text mining, database annotation, large-scale data integration and network analysis. The interface for online curation of the repository has been established using Payao tool. Results: We present the PD map, a computer-based knowledge repository, which includes molecular mechanisms of PD in a visually structured and standardized way. A bioinformatics framework that facilitates in-depth knowledge exploration, extraction and curation supports the map. We discuss the insights gained from PD map-driven text mining of a corpus of over 50 thousands full text PD-related papers, integration and visualization of gene expression in post mortem brain tissue of PD patients with the map, as well as results of network analysis. Conclusions: The knowledge repository of disease-related mechanisms provides a global insight into relationships between different pathways and allows considering a given pathology in a broad context. Enrichment with available text and bioinformatics databases as well as integration of experimental data supports better understanding of complex mechanisms of PD and formulation of novel research hypotheses. [less ▲]

Detailed reference viewed: 590 (72 UL)