References of "Brust, Matthias R. 50025542"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Distributed Pareto-based Path Planning Algorithm for Autonomous Unmanned Aerial Vehicles (Extended Abstract)
Samir Labib, Nader UL; Danoy, Grégoire UL; Brust, Matthias R. UL et al

Scientific Conference (2021, January 07)

Autonomous Unmanned Aerial Vehicles (UAVs) are in increasing demand thanks to their applicability in a wide range of domains. However, to fully exploit such potential, UAVs should be capable of ... [more ▼]

Autonomous Unmanned Aerial Vehicles (UAVs) are in increasing demand thanks to their applicability in a wide range of domains. However, to fully exploit such potential, UAVs should be capable of intelligently planning their collision-free paths as that impacts greatly the execution quality of their applications. While being a problem well addressed in literature, most presented solutions are either computationally complex centralised approaches or ones not suitable for the multiobjective requirements of most UAV use-cases. This extended abstract introduces ongoing research on a novel distributed Pareto path planning algorithm incorporating a dynamic multi-criteria decision matrix allowing each UAV to plan its collision-free path relying on local knowledge gained via digital stigmergy. The article presents some initial simulations results of a distributed UAV Traffic Management system (UTM) on a weighted multilayer network. [less ▲]

Detailed reference viewed: 153 (30 UL)
Full Text
Peer Reviewed
See detailCommunity Detection in Complex Networks: A Survey on Local Approaches
Esmaeilzadeh Dilmaghani, Saharnaz UL; Brust, Matthias R. UL; Danoy, Grégoire UL et al

Scientific Conference (2021)

Early approaches of community detection algorithms often depend on the network’s global structure with a time complexity correlated to the network size. Local algorithms emerged as a more efficient ... [more ▼]

Early approaches of community detection algorithms often depend on the network’s global structure with a time complexity correlated to the network size. Local algorithms emerged as a more efficient solution to deal with large-scale networks with millions to billions of nodes. This methodology has shifted the attention from global structure towards the local level to deal with a network using only a portion of nodes. Investigating the state-of-the-art, we notice the absence of a standard definition of locality between community detection algorithms. Different goals have been explored under the local terminology of community detection approaches that can be misunderstood. This paper probes existing contributions to extract the scopes where an algorithm performs locally. Our purpose is to interpret the concept of locality in community detection algorithms. We propose a locality exploration scheme to investigate the concept of locality at each stage of an existing community detection workflow. We summarized terminologies concerning the locality in the state-of-the-art community detection approaches. In some cases, we observe how different terms are used for the same concept. We demonstrate the applicability of our algorithm by providing a review of some algorithms using our proposed scheme. Our review highlights a research gap in community detection algorithms and initiates new research topics in this domain. [less ▲]

Detailed reference viewed: 172 (18 UL)
Full Text
Peer Reviewed
See detailInnovation Networks from Inter-organizational Research Collaborations
Esmaeilzadeh Dilmaghani, Saharnaz UL; Piyatumrong, Apivadee UL; Danoy, Grégoire UL et al

in Heuristics for Optimization and Learning (2020)

We consider the problem of automatizing network generation from inter-organizational research collaboration data. The resulting networks promise to obtain crucial advanced insights. In this paper, we ... [more ▼]

We consider the problem of automatizing network generation from inter-organizational research collaboration data. The resulting networks promise to obtain crucial advanced insights. In this paper, we propose a method to convert relational data to a set of networks using a single parameter, called Linkage Threshold (LT). To analyze the impact of the LT-value, we apply standard network metrics such as network density and centrality measures on each network produced. The feasibility and impact of our approach are demonstrated by using a real-world collaboration data set from an established research institution. We show how the produced network layers can reveal insights and patterns by presenting a correlation matrix. [less ▲]

Detailed reference viewed: 104 (17 UL)
Full Text
Peer Reviewed
See detailLocal Community Detection Algorithm with Self-defining Source Nodes
Esmaeilzadeh Dilmaghani, Saharnaz UL; Brust, Matthias R. UL; Danoy, Grégoire UL et al

in Complex Networks & Their Applications IX (2020, September 01)

Surprising insights in community structures of complex networks have raised tremendous interest in developing various kinds of community detection algorithms. Considering the growing size of existing ... [more ▼]

Surprising insights in community structures of complex networks have raised tremendous interest in developing various kinds of community detection algorithms. Considering the growing size of existing networks, local community detection methods have gained attention in contrast to global methods that impose a top-down view of global network information. Current local community detection algorithms are mainly aimed to discover local communities around a given node. Besides, their performance is influenced by the quality of the source node. In this paper, we propose a community detection algorithm that outputs all the communities of a network benefiting from a set of local principles and a self-defining source node selection. Each node in our algorithm progressively adjusts its community label based on an even more restrictive level of locality, considering its neighbours local information solely. Our algorithm offers a computational complexity of linear order with respect to the network size. Experiments on both artificial and real networks show that our algorithm gains moreover networks with weak community structures compared to networks with strong community structures. Additionally, we provide experiments to demonstrate the ability of the self-defining source node of our algorithm by implementing various source node selection methods from the literature. [less ▲]

Detailed reference viewed: 79 (13 UL)
Full Text
Peer Reviewed
See detailPrivacy and Security of Big Data in AI Systems:A Research and Standards Perspective
Esmaeilzadeh Dilmaghani, Saharnaz UL; Brust, Matthias R. UL; Danoy, Grégoire UL et al

in 2019 IEEE International Conference on Big Data (Big Data), 9-12 December 2019 (2020, February 24)

Detailed reference viewed: 325 (27 UL)
Full Text
Peer Reviewed
See detailNGAP: a novel hybrid metaheuristic algorithm for round-trip carsharing fleet planning
Changaival, Boonyarit UL; Danoy, Grégoire UL; Kliazovich et al

in GECCO '20: Genetic and Evolutionary Computation Conference, Companion Volume, Cancún, Mexico, July 8-12, 2020 (2020)

Detailed reference viewed: 90 (12 UL)
Full Text
Peer Reviewed
See detailCompetitive Evolution of a UAV Swarm for Improving Intruder Detection Rates
Stolfi Rosso, Daniel UL; Brust, Matthias R. UL; Danoy, Grégoire UL et al

in 2020 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2020, New Orleans, LA, USA, May 18-22, 2020 (2020)

Detailed reference viewed: 173 (17 UL)
Full Text
Peer Reviewed
See detailOptimizing the Performance of an Unpredictable UAV Swarm for Intruder Detection
Stolfi Rosso, Daniel UL; Brust, Matthias R. UL; Danoy, Grégoire UL et al

in Optimization and Learning - Third International Conference, OLA 2020, Cádiz, Spain, February 17-19, 2020, Proceedings (2020)

Detailed reference viewed: 124 (18 UL)
Full Text
Peer Reviewed
See detailBayesian optimisation to select Rössler system parameters used in Chaotic Ant Colony Optimisation for Coverage
Rosalie, Martin; Kieffer, Emmanuel UL; Brust, Matthias R. UL et al

in Journal of Computational Science (2020), 41

Detailed reference viewed: 125 (26 UL)
Full Text
Peer Reviewed
See detailTackling Large-Scale and Combinatorial Bi-Level Problems With a Genetic Programming Hyper-Heuristic
Kieffer, Emmanuel UL; Danoy, Grégoire UL; Brust, Matthias R. UL et al

in IEEE Transactions on Evolutionary Computation (2020), 24(1), 44--56

Detailed reference viewed: 88 (12 UL)
Full Text
Peer Reviewed
See detailDesign Challenges of Trustworthy Artificial Intelligence Learning Systems
Brust, Matthias R. UL; Bouvry, Pascal UL; Danoy, Grégoire UL et al

in Intelligent Information and Database Systems - 12th Asian Conference ACIIDS 2020, Phuket, Thailand, March 23-26, 2020, Companion Proceedings (2020)

Detailed reference viewed: 93 (14 UL)
Full Text
Peer Reviewed
See detailA Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UAV Swarms
Stolfi Rosso, Daniel UL; Brust, Matthias R. UL; Danoy, Grégoire UL et al

in IEEE 17th Annual Consumer Communications & Networking Conference CCNC 2020, Las Vegas, NV, USA, January 10-13, 2020 (2020)

Detailed reference viewed: 95 (13 UL)
Full Text
Peer Reviewed
See detailInternet of Unmanned Aerial Vehicles—A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management
Samir Labib, Nader UL; Danoy, Grégoire UL; Musial, Jedrzej UL et al

in Sensors (2019), 19(21), 22

The rapid adoption of Internet of Things (IoT) has encouraged the integration of new connected devices such as Unmanned Aerial Vehicles (UAVs) to the ubiquitous network. UAVs promise a pragmatic solution ... [more ▼]

The rapid adoption of Internet of Things (IoT) has encouraged the integration of new connected devices such as Unmanned Aerial Vehicles (UAVs) to the ubiquitous network. UAVs promise a pragmatic solution to the limitations of existing terrestrial IoT infrastructure as well as bring new means of delivering IoT services through a wide range of applications. Owning to their potential, UAVs are expected to soon dominate the low-altitude airspace over populated cities. This introduces new research challenges such as the safe management of UAVs operation under high traffic demands. This paper proposes a novel way of structuring the uncontrolled, low-altitude airspace, with the aim of addressing the complex problem of UAV traffic management at an abstract level. The work, hence, introduces a model of the airspace as a weighted multilayer network of nodes and airways and presents a set of experimental simulation results using three UAV traffic management heuristics. [less ▲]

Detailed reference viewed: 198 (37 UL)
Full Text
Peer Reviewed
See detailA Multilayer Low-Altitude Airspace Model for UAV Traffic Management
Samir Labib, Nader UL; Danoy, Grégoire UL; Musial, Jedrzej et al

in Samir Labib, Nader; Danoy, Grégoire; Musial, Jedrzej (Eds.) et al 9th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications (DIVANet '19) (2019, November)

Over the recent years, Unmanned Aerial Vehicles' (UAVs) technology developed rapidly. In turn shedding light on a wide range of potential civil and commercial applications ranging from mapping and ... [more ▼]

Over the recent years, Unmanned Aerial Vehicles' (UAVs) technology developed rapidly. In turn shedding light on a wide range of potential civil and commercial applications ranging from mapping and surveillance, parcel delivery to more demanding ones that require UAVs to operate in heterogeneous swarms. However, with the great advantages UAVs bring, they are expected to soon dominate the shared, low-altitude airspace over populated cities, introducing multiple new research challenges in safely managing the unprecedented traffic demands. The main contribution of this work is addressing the complex problem of UAV traffic management at an abstract level by proposing a structure for the uncontrolled low-altitude airspace. The paper proposes a model of the airspace as a weighted multilayer network of nodes and airways and presents a set of experimental simulations of UAV traffic for the verification and validation of the model. Finally, the paper outlines our intended future work. [less ▲]

Detailed reference viewed: 244 (49 UL)
Full Text
Peer Reviewed
See detailTechnical report on data protection and privacy in smart ICT: Internet of Things: Gap analysis between scientific research and technical standardisation: Gap analysis Internet of Things
Samir Labib, Nader UL; Brust, Matthias R. UL; Danoy, Grégoire UL et al

in Technical report on data protection and privacy in smart ICT (2019), 1

With the emergence of new digital trends like the Internet of Things (IoT), more industry actors and technical committees pursue research in utilizing such technologies as they promise better and ... [more ▼]

With the emergence of new digital trends like the Internet of Things (IoT), more industry actors and technical committees pursue research in utilizing such technologies as they promise better and optimized management, improved energy efficiency and better quality living by facilitating a magnitude of value-added services. However, as communication, sensing and actuation become increasingly sophisticated, such promising data-driven IoT systems generate, process, and exchange larger amounts of data, some of which is privacy-sensitive and security-critical. The sustained increase in number of connected devices, catalyzed by IoT, affirms the importance of addressing data protection, privacy and security challenges, as indices of trust, to achieve market acceptance. This consequently, emphasizes the need of a solid technical and regulatory foundation to ensure trustworthiness within the IoT ecosystem. The goal of this study is to first introduce the concept of trustworthiness in IoT with its main pillars, data protection, privacy and security, and then analyze developments in research and standardization for each of these. The study presents a gap analysis on data protection, privacy and security between research and standardization, throughout which the use case of Unmanned Aerial Vehicles (UAVs) is referred to, as a promising value-added service example of mobile IoT devices. The study concludes with suggestions for future research and standardization in order to address the identified gaps. [less ▲]

Detailed reference viewed: 46 (6 UL)
Full Text
Peer Reviewed
See detailTrustworthiness in IoT - A Standards Gap Analysis on Security, Data Protection and Privacy
Samir Labib, Nader UL; Brust, Matthias R. UL; Danoy, Grégoire UL et al

in Samir Labib, Nader; Brust, Matthias R.; Danoy, Grégoire (Eds.) et al Trustworthiness in IoT - A Standards Gap Analysis on Security, Data Protection and Privacy (2019, October)

With the emergence of new digital trends like Internet of Things (IoT), more industry actors and technical committees pursue research in utilising such technologies as they promise a better and optimised ... [more ▼]

With the emergence of new digital trends like Internet of Things (IoT), more industry actors and technical committees pursue research in utilising such technologies as they promise a better and optimised management, improved energy efficiency and a better quality living through a wide array of value-added services. However, as sensing, actuation, communication and control become increasingly more sophisticated, such promising data-driven systems generate, process, and exchange larger amounts of security-critical and privacy-sensitive data, which makes them attractive targets of attacks. In turn this affirms the importance of trustworthiness in IoT and emphasises the need of a solid technical and regulatory foundation. The goal of this paper is to first introduce the concept of trustworthiness in IoT, its main pillars namely, security, privacy and data protection, and then analyse the state-of-the-art in research and standardisation for each of these subareas. Throughout the paper, we develop and refer to Unmanned Aerial Vehicles (UAVs) as a promising value-added service example of mobile IoT devices. The paper then presents a thorough gap analysis and concludes with recommendations for future work. [less ▲]

Detailed reference viewed: 327 (30 UL)
Full Text
Peer Reviewed
See detailLink Definition ameliorating Community Detection in Collaboration Networks
Esmaeilzadeh Dilmaghani, Saharnaz UL; Brust, Matthias R. UL; Piyatumrong, Apivadee et al

in Frontiers in Big Data (2019), 2

Detailed reference viewed: 142 (16 UL)
Full Text
Peer Reviewed
See detailA GP Hyper-Heuristic Approach for Generating TSP Heuristics
Duflo, Gabriel UL; Kieffer, Emmanuel UL; Brust, Matthias R. UL et al

in 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS 2019) (2019, May 20)

Detailed reference viewed: 283 (68 UL)