References of "Bouvier, P."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDynamic and structural properties of orthorhombic rare-earth manganites under high pressure
Mota, D. A.; Almeida, A.; Rodrigues, V. H. et al

in Physical Review. B (2014), 90(5),

We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb, and Dy) and synchrotron x-ray diffraction (XRD), for A = Pr, Sm, Eu, and Dy ... [more ▼]

We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb, and Dy) and synchrotron x-ray diffraction (XRD), for A = Pr, Sm, Eu, and Dy. In all cases, a phase transition was evidenced by the disappearance of the Raman signal at a critical pressure that depends on the A cation. For the compounds with A = Pr, Sm, and Dy, XRD confirms the presence of a corresponding structural transition to a noncubic phase, so that the disappearance of the Raman spectrum can be interpreted as an insulator-to-metal transition. We analyze the compression mechanisms at work in the different manganites via the pressure dependence of the lattice parameters, the shear strain in the ac plane, and the Raman bands associated with out-of-phase MnO6 rotations and in-plane O2 symmetric stretching modes. Our data show a crossover across the rare-earth series between two different kinds of behavior. For the smaller A cations considered in this study (Dy and Tb), the compression is nearly isotropic in the ac plane, with only small evolutions of the tilt angles and cooperative Jahn-Teller distortion. As the radius of the A cation increases, the pressure-induced reduction of Jahn-Teller distortion becomes more pronounced and increasingly significant as a compression mechanism, while the pressure-induced tilting of octahedra chains becomes conversely less pronounced. We finally discuss our results in light of the notion of chemical pressure and show that the analogy with hydrostatic pressure works quite well for manganites with the smaller A cations considered in this paper but can be misleading with large A cations. [less ▲]

Detailed reference viewed: 132 (2 UL)
Full Text
Peer Reviewed
See detailSingle-crystalline BiMnO3 studied by temperature-dependent x-ray diffraction and Raman spectroscopy
Toulemonde, P.; Bordet, P.; Bouvier, P. et al

in Physical Review. B (2014), 89(22),

We report on the temperature dependence of the phonons and crystallographic parameters in BiMnO3 single crystals grown under high pressure and high temperature. The crystallographic structure of the ... [more ▼]

We report on the temperature dependence of the phonons and crystallographic parameters in BiMnO3 single crystals grown under high pressure and high temperature. The crystallographic structure of the sample was refined from room temperature to liquid helium temperature in the centrosymmetric C2/c space group, i.e., a group which does not allow ferroelectricity. In addition, the lattice dynamics was probed by Raman spectroscopy down to liquid nitrogen temperature, i.e., below the ferromagnetic transition at TC = 100 ± 2 K. Both crystallographic and Raman data indicate the absence of a structural phase transition at the ferromagnetic ordering or any other temperature. The Raman signature around TC shows a significant spin-phonon coupling for the high-frequency bands. [less ▲]

Detailed reference viewed: 171 (3 UL)