References of "Blauwendraat, Cornelis"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGenome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture
Chia, Ruth; Sabir, Marya S.; Bandres-Ciga, Sara et al

in Nature Genetics (2021)

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic ... [more ▼]

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s disease and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition. [less ▲]

Detailed reference viewed: 76 (1 UL)
Full Text
See detailGenome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into the complex genetic architecture
Chia, Ruth; Sabir, Marya S.; Bandres-Ciga, Sara et al

E-print/Working paper (2020)

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic ... [more ▼]

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.Competing Interest StatementThomas G. Beach is a consultant for Prothena, Vivid Genomics and Avid Radiopharmaceuticals. He is a scientific advisory board member for Vivid Genomics. John A. Hardy, Huw R. Morris, Stuart Pickering-Brown, Andrew B. Singleton, and Bryan J. Traynor hold US, EU and Canadian patents on the clinical testing and therapeutic intervention for the hexanucleotide repeat expansion of C9orf72. Michael A. Nalls is supported by a consulting contract between Data Tecnica International and the National Institute on Aging, NIH, Bethesda, MD, USA; as a possible conflict of interest Dr. Nalls also consults for Neuron23 Inc., Lysosomal Therapeutics Inc., Illumina Inc., the Michael J. Fox Foundation and Vivid Genomics among others. Jose A. Palma is an editorial board member of Movement Disorders, Parkinsonism & Related Disorders, BMC Neurology, and Clinical Autonomic Research. Bradley F. Boeve, James Leverenz, and Sonja W. Scholz serve on the Scientific Advisory Council of the Lewy Body Dementia Association. Sonja W. Scholz is an editorial board member for the Journal of Parkinson's Disease. Bryan J. Traynor is an editorial board member for JAMA Neurology; Journal of Neurology, Neurosurgery, and Psychiatry; Brain; and Neurobiology of Aging. Zbigniew K. Wszolek serves as a principal investigator or co-principal investigator on Abbvie, Inc. (M15-562 and M15-563), Biogen, Inc. (228PD201) grant, and Biohaven Pharmaceuticals, Inc. (BHV4157-206 and BHV3241-301). Zbigniew K. Wszolek serves as the principal investigator of the Mayo Clinic American Parkinson Disease Association (APDA) Information and Referral Center, and as co-principal investigator of the Mayo Clinic APDA Center for Advanced Research. All other authors report no competing interests. [less ▲]

Detailed reference viewed: 161 (3 UL)
Full Text
Peer Reviewed
See detailInsufficient Evidence for Pathogenicity of SNCA His50Gln (H50Q) in Parkinson's Disease
Krüger, Rejko UL; Blauwendraat, Cornelis; International Parkinson's Disease Genomics Consortium (IPDGC), COURAGE-PD Consortium

in Neurobiology of Aging (2018)

SNCA missense mutations are a rare cause of autosomal dominant Parkinson's disease (PD). To date, 6 missense mutations in SNCA have been nominated as causal. Here, we assess the frequency of these 6 ... [more ▼]

SNCA missense mutations are a rare cause of autosomal dominant Parkinson's disease (PD). To date, 6 missense mutations in SNCA have been nominated as causal. Here, we assess the frequency of these 6 mutations in public population databases and PD case-control data sets to determine their true pathogenicity. We found that 1 of the 6 reported SNCA mutations, His50Gln, was consistently identified in large population databases, and no enrichment was evident in PD cases compared to controls. These results suggest that His50Gln is probably not a pathogenic variant. This information is important to provide counseling for His50Gln carriers and has implications for the interpretation of His50Gln α-synuclein functional investigations. [less ▲]

Detailed reference viewed: 35 (0 UL)
Full Text
Peer Reviewed
See detailNeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases
Blauwendraat, Cornelis; Faghri, Faraz; Pihlstrom, Lasse et al

in Neurobiology of Aging (2017)

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina ... [more ▼]

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina genotyping array, a fast and efficient genotyping platform designed for the investigation of genetic variation in neurodegenerative diseases. Here, we present its updated version, named NeuroChip. The NeuroChip is a low cost, custom-designed array containing a tagging variant backbone of about 306,670 variants complemented with a manually curated custom content comprised of 179,467 variants implicated in diverse neurological diseases, including Alzheimer’s disease, Parkinson’s disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. The tagging backbone was chosen because of the low cost and good genome-wide resolution; the custom content can be combined with other backbones, like population or drug development arrays. Using the NeuroChip, we can accurately identify rare variants and impute over 5.3 million common SNPs from the latest release of the Haplotype Reference Consortium. In summary, we describe the design and usage of the NeuroChip array, and show its capability for detecting rare pathogenic variants in numerous neurodegenerative diseases. The NeuroChip has a more comprehensive and improved content, which makes it a reliable, high-throughput, cost-effective screening tool for genetic research and molecular diagnostics in neurodegenerative diseases. [less ▲]

Detailed reference viewed: 321 (67 UL)