![]() Colombara, Diego ![]() in Scientific Reports (2017), 7 Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of ... [more ▼] Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. [less ▲] Detailed reference viewed: 306 (14 UL)![]() ; Colombara, Diego ![]() ![]() in Progress in Photovoltaics (2015) Detailed reference viewed: 304 (19 UL)![]() ; Colombara, Diego ![]() ![]() Scientific Conference (2015, September) Alkalis are essential in Cu(In,Ga)Se2 absorber layers for efficient solar cells. Current doping methods rely on solid state diffusion of an alkali through to the absorber layer, e.g. a thin NaF layer on ... [more ▼] Alkalis are essential in Cu(In,Ga)Se2 absorber layers for efficient solar cells. Current doping methods rely on solid state diffusion of an alkali through to the absorber layer, e.g. a thin NaF layer on Mo or NaCl dissolved in a metal precursor ink[1]. The apparent concentration of alkali in the final absorber is determined by the initial alkali dosing and the use of an interfacial barrier to stop alkali diffusion from the substrate. Until now the vapor–absorber interface as a source or sink of alkali doping has been largely ignored. We show that device efficiency improves from 2 to 8% by gas phase Na adsorption alone. Conversely initial results show that Na can also be desorbed to the gas phase. Although these efficiencies are lower than those obtained by including Na directly in the precursor (device efficiency 13.3% [1]), the findings are relevant to all chalcogenide growers as they show that exact doping, and thus control of device efficiency, is only possible when gas phase adsorption/desorption processes are controlled. [less ▲] Detailed reference viewed: 168 (13 UL)![]() ; ; et al in Thin Solid Films (2014) Detailed reference viewed: 180 (4 UL) |
||