References of "Bernardin, Francois"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHighly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF
Lesur, Antoine; Schmit, Pierre-Olivier; Bernardin, François et al

in Analytical Chemistry (2021)

Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a ... [more ▼]

Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation. Compared to conventional parallel reaction monitoring (PRM), precursor ions are accumulated in the trapped ion mobility spectrometry (TIMS) cells and separated according to their shape and charge before eluting into the quadrupole time-of-flight (QTOF) part of the mass spectrometer. The ion mobility trap allows measuring up to six peptides from a single 100 ms ion mobility separation with the current setup. Using these improved mass spectrometric capabilities, we detected and quantified 216 isotope-labeled synthetic peptides (AQUA peptides) spiked in HeLa human cell extract with limits of quantification of 17.2 amol for some peptides. The acquisition method is highly reproducible between injections and enables accurate quantification in biological samples, as demonstrated by quantifying KRas, NRas, and HRas as well as several Ras mutations in lung and colon cancer cell lines on fast 10 min gradient separations. [less ▲]

Detailed reference viewed: 56 (0 UL)
Full Text
Peer Reviewed
See detailHypoxia-Induced Adaptations of miRNomes and Proteomes in Melanoma Cells and Their Secreted Extracellular Vesicles
Walbrecq, Geoffroy; Lecha, Odile; Gaigneaux, Anthoula UL et al

in Cancers (2020)

Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial–mesenchymal transition, metastasis and resistance to ... [more ▼]

Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial–mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be taken up by neighbouring or distant cells in the tumour microenvironment, thus facilitating intercellular communication. The quantity of extracellular vesicle secretion and their composition can vary with changing microenvironmental conditions and disease states. Here, we investigated in melanoma cells the influence of hypoxia on the content and number of secreted EVs. Whole miRNome and proteome profiling revealed distinct expression patterns in normoxic or hypoxic growth conditions. Apart from the well-known miR-210, we identified miR-1290 as a novel hypoxia-associated microRNA, which was highly abundant in hypoxic EVs. On the other hand, miR-23a-5p and -23b-5p were consistently downregulated in hypoxic conditions, while the protein levels of the miR-23a/b-5p-predicted targetIPO11were concomitantly upregulated. Furthermore, hypoxic melanoma EVs exhibit a signature consisting of six proteins (AKR7A2, DDX39B, EIF3C, FARSA, PRMT5, VARS), which were significantly associated with a poor prognosis for melanoma patients, indicating that proteins and/or miRNAs secreted by cancer cells may be exploited as biomarkers. [less ▲]

Detailed reference viewed: 73 (3 UL)
Full Text
Peer Reviewed
See detailAnalysis of the dynamic co-expression network of heart regeneration in the zebrafish
Rodius, Sophie; Androsova, Ganna UL; Götz, Lou et al

in Scientific Reports (2016), 6

The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact ... [more ▼]

The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration. [less ▲]

Detailed reference viewed: 114 (5 UL)
Full Text
Peer Reviewed
See detailA comprehensive integrative analysis of the transcriptional network underlying the zebrafish heart regeneration
Androsova, Ganna UL; Rodius, Sophie; Nazarov, Petr et al

Poster (2014, September 08)

Despite a notable reduction in incidence of acute myocardial infarction (MI), patients who experienced it remain at risk for premature death and cardiac malfunction. The human cardiomyocytes are not able ... [more ▼]

Despite a notable reduction in incidence of acute myocardial infarction (MI), patients who experienced it remain at risk for premature death and cardiac malfunction. The human cardiomyocytes are not able to achieve extensive regeneration upon MI. Remarkably, the adult zebrafish is able to achieve complete heart regeneration following amputation, cryoinjury or genetic ablation. This raises new potential opportunities on how to boost heart healing capacity in humans. The objective of our research is to characterize the transcriptional network of the zebrafish heart regeneration and underlying regulatory mechanisms. To conduct our investigation, we used microarray data from zebrafish at 6 post-cryoinjury time points (4 hours, and 1, 3, 7, 14 and 90 days) and control samples. We thereon looked for the gene co-expression patterns in the data and, based on that, constructed a weighted gene co-expression network. To detect candidate functional sub-networks (modules), we used two different network clustering approaches: a density-based (ClusterONE) and a topological overlap-based (Hybrid Dynamic Branch Cut) algorithms. The visualization of the expression changes of the candidate modules reflected the dynamics of the recovery process. Also we aimed to identify candidate “hub” genes that might regulate the behavior of the biological modules and drive the regeneration process. We identified eighteen distinct modules associated with heart recovery upon cryoinjury. Functional enrichment analysis displayed that the modules are involved in different cellular processes crucial for heart regeneration, including: cell fate specification (p-value < 0.006) and migration (p-value < 0.047), ribosome biogenesis (p-value < 0.004), cardiac cell differentiation (p-value < 3E-04), and various signaling events (p-value < 0.037). The visualization of the modules’ expression profiles confirmed the relevance of these functional enrichments. For instance, the genes of the module involved in regulation of endodermal cell fate specification were up-regulated upon injury until 3 days. Among the candidate hub genes detected in the network, there are genes relevant to atherosclerosis treatment and inflammation during cardiac arrest. These and other findings are currently undergoing deeper computational analyses. The top promising targets will be independently validated using our zebrafish (in vivo) model. In conclusion, our findings provide insights into the complex regulatory mechanisms involved during heart regeneration in the zebrafish. These data will be useful for modelling specific network-based responses to heart injury, and for finding sensitive network points that may trigger or boost heart regeneration. [less ▲]

Detailed reference viewed: 99 (9 UL)
Full Text
Peer Reviewed
See detailThe actin filament cross-linker L-plastin confers resistance to TNF-alpha in MCF-7 breast cancer cells in a phosphorylation-dependent manner.
Janji, Bassam; Vallar, Laurent; Al Tanoury, Ziad et al

in Journal of Cellular & Molecular Medicine (2010), 14(6A), 1264-75

We used a tumour necrosis factor (TNF)-alpha resistant breast adenocarcinoma MCF-7 cell line to investigate the involvement of the actin cytoskeleton in the mechanism of cell resistance to this cytokine ... [more ▼]

We used a tumour necrosis factor (TNF)-alpha resistant breast adenocarcinoma MCF-7 cell line to investigate the involvement of the actin cytoskeleton in the mechanism of cell resistance to this cytokine. We found that TNF resistance correlates with the loss of cell epithelial properties and the gain of a mesenchymal phenotype, reminiscent of an epithelial-to-mesenchymal transition (EMT). Morphological changes were associated with a profound reorganization of the actin cytoskeleton and with a change in the repertoire of expressed actin cytoskeleton genes and EMT markers, as revealed by DNA microarray-based expression profiling. L-plastin, an F-actin cross-linking and stabilizing protein, was identified as one of the most significantly up-regulated genes in TNF-resistant cells. Knockdown of L-plastin in these cells revealed its crucial role in conferring TNF resistance. Importantly, overexpression of wild-type L-plastin in TNF-sensitive MCF-7 cells was sufficient to protect them against TNF-mediated cell death. Furthermore, we found that this effect is dependent on serine-5 phosphorylation of L-plastin and that non-conventional protein kinase C isoforms and the ceramide pathway may regulate its phosphorylation state. The protective role of L-plastin was not restricted to TNF-alpha resistant MCF-7 cells because a correlation between the expression of L-plastin and the resistance to TNF-alpha was observed in other breast cancer cell lines. Together, our study discloses a novel unexpected role of the actin bundling protein L-plastin as a cell protective protein against TNF-cytotoxicity. [less ▲]

Detailed reference viewed: 84 (10 UL)