References of "Berkovic, Samuel F."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLoss-of-function variants in the KCNQ5 gene are implicated in genetic generalized epilepsies
Krüger, Johanna; Schubert, Julian; Kegele, Josua et al

in eBioMedicine (2022), 84

Summary Background De novo missense variants in KCNQ5, encoding the voltage-gated K+ channel KV7.5, have been described to cause developmental and epileptic encephalopathy (DEE) or intellectual disability ... [more ▼]

Summary Background De novo missense variants in KCNQ5, encoding the voltage-gated K+ channel KV7.5, have been described to cause developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease-related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms. Methods 1292 families with GGE were studied by next-generation sequencing. Whole-cell patch-clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with homology modelling. Findings We identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures; two variants were also associated with mild to moderate ID. All missense variants displayed a strongly decreased current density indicating a loss-of-function (LOF). When mutant channels were co-expressed with wild-type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant-negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The R359C variant altered PI(4,5)P2-interaction. Interpretation Our study identified deleterious KCNQ5 variants in GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant-negative effects through functional deficits. LOF of KV7.5 channels will reduce the M-current, likely resulting in increased excitability of KV7.5-expressing neurons. Further studies on network level are necessary to understand which circuits are affected and how this induces generalized seizures. Funding DFG/FNR Research Unit FOR-2715 (Germany/Luxemburg), BMBF rare disease network Treat-ION (Germany), foundation ‘no epilep’ (Germany). [less ▲]

Detailed reference viewed: 17 (0 UL)
Full Text
See detailGenome-wide meta-analysis of over 29,000 people with epilepsy reveals 26 loci and subtype-specific genetic architecture
International League Against Epilepsy Consortium on Complex Epilepsies Krause, Roland; Landoulsi, Zied UL; May, Patrick UL et al

E-print/Working paper (2022)

Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here, we report a trans-ethnic GWAS including 29,944 cases ... [more ▼]

Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here, we report a trans-ethnic GWAS including 29,944 cases, stratified into three broad- and seven sub-types of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants substantially close the missing heritability gap for GGE. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analysis of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current anti-seizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment. [less ▲]

Detailed reference viewed: 76 (9 UL)
Full Text
Peer Reviewed
See detailA pharmacogenomic assessment of psychiatric adverse drug reactions to levetiracetam.
Campbell, Ciarán; McCormack, Mark; Patel, Sonn et al

in Epilepsia (2022), 63(6), 1563-1570

OBJECTIVE: Levetiracetam (LEV) is an effective antiseizure medicine, but 10%-20% of people treated with LEV report psychiatric side-effects, and up to 1% may have psychotic episodes. Pharmacogenomic ... [more ▼]

OBJECTIVE: Levetiracetam (LEV) is an effective antiseizure medicine, but 10%-20% of people treated with LEV report psychiatric side-effects, and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioral ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioral disorder (n = 149) or psychotic reaction (n = 37) to LEV-exposed people with no history of psychiatric ADRs (n = 920). All samples were of European ancestry. We performed genome-wide association study (GWAS) analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n = 18) and controls (n = 122). RESULTS: Univariate GWAS found no significant associations with either LEV-associated behavioural disorder or LEV-psychotic reaction. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to contr ols (p = .0097, estimate = .4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV ADRs. [less ▲]

Detailed reference viewed: 30 (1 UL)
Full Text
Peer Reviewed
See detailSub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
Motelow, Joshua E.; Povysil, Gundula; Dhindsa, Ryan S. et al

in The American Journal of Human Genetics (2021)

Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we ... [more ▼]

Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy. [less ▲]

Detailed reference viewed: 51 (2 UL)
Full Text
See detailLoss of function variants in the KCNQ5 gene are associated with genetic generalized epilepsies
Krueger, Johanna; Schubert, Julian; Kegele, Josua et al

E-print/Working paper (2021)

Objective: De novo missense variants in KCNQ5, encoding the voltage gated K+ channel KV7.5, have been described as a cause of developmental and epileptic encephalopathy (DEE) or intellectual disability ... [more ▼]

Objective: De novo missense variants in KCNQ5, encoding the voltage gated K+ channel KV7.5, have been described as a cause of developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease-related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms. Methods: 1292 families with GGE were studied by next-generation sequencing. Whole-cell patch-clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with docking and homology modeling. Results: We identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures, two variants were also associated with mild to moderate ID. All three missense variants displayed a strongly decreased current density indicating a loss-of-function (LOF). When mutant channels were co-expressed with wild-type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant-negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The p.Arg359Cys variant altered PI(4,5)P2-interaction, presumably in the non-conducting preopen-closed state. Interpretation: Our study indicates that specific deleterious KCNQ5 variants are associated with GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant-negative effects through functional, rather than trafficking deficits. LOF of KV7.5 channels will reduce the M-current, likely resulting in increased excitability of KV7.5-expressing neurons. Further studies on a network level are necessary to understand which circuits are affected and how the variants induce generalized seizures. [less ▲]

Detailed reference viewed: 68 (0 UL)
Full Text
Peer Reviewed
See detailUltra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals
Feng, Yen-Chen Anne; Howrigan, Daniel P.; Abbott, Liam E. et al

in American Journal of Human Genetics (2019)

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared ... [more ▼]

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology. [less ▲]

Detailed reference viewed: 144 (7 UL)
Full Text
Peer Reviewed
See detailApplication of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data
Allen, Andrew S.; Berkovic, Samuel F.; Bridgers, Joshua et al

in European Journal of Human Genetics (2017)

The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly ... [more ▼]

The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient–parent trios that were generally prescreened for rare metabolic disorders. In the current sample, our rare variant transmission disequilibrium test did not identify individual genes with significantly distorted transmission over expectation after correcting for the multiple tests. While the rare variant transmission disequilibrium test did not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population. [less ▲]

Detailed reference viewed: 209 (10 UL)
Full Text
Peer Reviewed
See detailDe Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies.
Appenzeller, Silke; Balling, Rudi UL; Barisic, Nina et al

in American Journal of Human Genetics (2017), 100(1), 179-

In the list of consortium members for the Epilepsy Phenome/Genome Project, member Dina Amrom’s name was misspelled as Amron. The authors regret the error.

Detailed reference viewed: 174 (3 UL)
Full Text
Peer Reviewed
See detailCHD2 myoclonic encephalopathy is frequently associated with self-induced seizures
Thomas, Rhys H.; Zhang, Lin Mei; Carvill, Gemma L. et al

in Neurology (2015), 84(9), 951-958

Objective: To delineate the phenotype of early childhood epileptic encephalopathy due to de novo mutations of CHD2, which encodes the chromodomain helicase DNA binding protein 2. Methods: We analyzed the ... [more ▼]

Objective: To delineate the phenotype of early childhood epileptic encephalopathy due to de novo mutations of CHD2, which encodes the chromodomain helicase DNA binding protein 2. Methods: We analyzed the medical history, MRI, and video-EEG recordings of 9 individuals with de novo CHD2 mutations and one with a de novo 15q26 deletion encompassing CHD2. Results: Seizures began at a mean of 26 months (12–42) with myoclonic seizures in all 10 cases. Seven exhibited exquisite clinical photosensitivity; 6 self-induced with the television. Absence seizures occurred in 9 patients including typical (4), atypical (2), and absence seizures with eyelid myoclonias (4). Generalized tonic-clonic seizures occurred in 9 of 10 cases with a mean onset of 5.8 years. Convulsive and nonconvulsive status epilepticus were later features (6/10, mean onset 9 years). Tonic (40%) and atonic (30%) seizures also occurred. In 3 cases, an unusual seizure type, the atonic-myoclonic-absence was captured on video. A phenotypic spectrum was identified with 7 cases having moderate to severe intellectual disability and refractory seizures including tonic attacks. Their mean age at onset was 23 months. Three cases had a later age at onset (34 months) with relative preservation of intellect and an initial response to antiepileptic medication. Conclusion: The phenotypic spectrum of CHD2 encephalopathy has distinctive features of myoclonic epilepsy, marked clinical photosensitivity, atonic-myoclonic-absence, and intellectual disability ranging from mild to severe. Recognition of this genetic entity will permit earlier diagnosis and enable the development of targeted therapies. [less ▲]

Detailed reference viewed: 178 (5 UL)
Full Text
Peer Reviewed
See detailCHD2 variants are a risk factor for photosensitivity in epilepsy
Galizia, Elizabeth C.; Myers, Candace T.; Leu, Costin et al

in Brain: a Journal of Neurology (2015)

Detailed reference viewed: 239 (18 UL)