References of "Bender, Philipp Florian 50031246"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMagnetic correlations in polycrystalline Tb0.15Co0.85
Bersweiler, Mathias UL; Bender, Philipp Florian UL; Peral Alonso, Inmaculada UL et al

in Journal of Physics: D Applied Physics (2020), 53

Detailed reference viewed: 76 (12 UL)
Full Text
Peer Reviewed
See detailMagnetic structure factor of correlated moments in small-angle neutron scattering
Honecker, Dirk UL; Fernández Barquín, Luis; Bender, Philipp Florian UL

in Physical Review. B, Condensed Matter and Materials Physics (2020), 101(13), 134401

The interplay between structural and magnetic properties of nanostructured magnetic materials allows one to realize unconventional magnetic effects, which results in a demand for experimental techniques ... [more ▼]

The interplay between structural and magnetic properties of nanostructured magnetic materials allows one to realize unconventional magnetic effects, which results in a demand for experimental techniques to determine the magnetization profile with nanoscale resolution. Magnetic small-angle neutron scattering (SANS) probes both the chemical and magnetic nanostructure and is thus a powerful technique, e.g., for the characterization of magnetic nanoparticles. Here, we show that the conventionally used particle-matrix approach to describe SANS of magnetic particle assemblies, however, leads to a flawed interpretation. As a remedy, we provide general expressions for the field-dependent two-dimensional magnetic SANS cross section of correlated moments. It is shown that for structurally disordered ensembles the magnetic structure factor is in general, and contrary to common assumptions, (i) anisotropic also in zero field and (ii) that even in saturation the magnetic structure factor deviates from the nuclear one. These theoretical predictions explain qualitatively the intriguing experimental, polarized SANS data of an ensemble of dipolar-coupled iron oxide nanoparticles. [less ▲]

Detailed reference viewed: 89 (2 UL)
Full Text
Peer Reviewed
See detailThe benefits of a Bayesian analysis for the characterization of magnetic nanoparticles
Bersweiler, Mathias UL; Rubio, Helena Gavilan; Honecker, Dirk UL et al

in Nanotechnology (2020), 31(43), 435704

Magnetic nanoparticles offer a unique potential for various biomedical applications, but prior to commercial usage a standardized characterization of their structural and magnetic properties is required ... [more ▼]

Magnetic nanoparticles offer a unique potential for various biomedical applications, but prior to commercial usage a standardized characterization of their structural and magnetic properties is required. For a thorough characterization, the combination of conventional magnetometry and advanced scattering techniques has shown great potential. In the present work, we characterize a powder sample of high-quality iron oxide nanoparticles that are surrounded with a homogeneous thick silica shell by DC magnetometry and magnetic small-angle neutron scattering (SANS). To retrieve the particle parameters such as their size distribution and saturation magnetization from the data, we apply standard model fits of individual data sets as well as global fits of multiple curves, including a combination of the magnetometry and SANS measurements. We show that by combining a standard least-squares fit with a subsequent Bayesian approach for the data refinement, the probability distributions of the model parameters and their cross correlations can be readily extracted, which enables a direct visual feedback regarding the quality of the fit. This prevents an overfitting of data in case of highly correlated parameters and renders the Bayesian method as an ideal component for a standardized data analysis of magnetic nanoparticle samples. [less ▲]

Detailed reference viewed: 88 (7 UL)
Full Text
Peer Reviewed
See detailUnraveling Nanostructured Spin Textures in Bulk Magnets
Bender, Philipp Florian UL; Leliaert, Jonathan; Bersweiler, Mathias UL et al

in Small Science (2020), (n/a),

One of the key challenges in magnetism remains the determination of the nanoscopic magnetization profile within the volume of thick samples, such as permanent ferromagnets. Thanks to the large penetration ... [more ▼]

One of the key challenges in magnetism remains the determination of the nanoscopic magnetization profile within the volume of thick samples, such as permanent ferromagnets. Thanks to the large penetration depth of neutrons, magnetic small-angle neutron scattering (SANS) is a powerful technique to characterize bulk samples. The major challenge regarding magnetic SANS is accessing the real-space magnetization vector field from the reciprocal scattering data. In this letter, a fast iterative algorithm is introduced that allows one to extract the underlying two-dimensional magnetic correlation functions from the scattering patterns. This approach is used here to analyze the magnetic microstructure of Nanoperm, a nanocrystalline alloy which is widely used in power electronics due to its extraordinary soft magnetic properties. It can be shown that the computed correlation functions clearly reflect the projection of the three-dimensional magnetization vector field onto the detector plane, which demonstrates that the used methodology can be applied to probe directly spin-textures within bulk samples with nanometer-resolution. This article is protected by copyright. All rights reserved. [less ▲]

Detailed reference viewed: 131 (15 UL)
See detailInvestigating magnetic nanoparticles by small-angle neutron scattering
Bender, Philipp Florian UL

Presentation (2019, November)

Detailed reference viewed: 18 (4 UL)
Full Text
Peer Reviewed
See detailSupraferromagnetic correlations in clusters of magnetic nanoflowers
Bender, Philipp Florian UL; Honecker, Dirk UL; Fernández Barquín, Luis

in Applied Physics Letters (2019), 115

Magnetic nanoflowers are densely packed aggregates of superferromagnetically coupled iron oxide nanocrystallites, which excel during magnetic hyperthermia experiments. Here, we investigate the nature of ... [more ▼]

Magnetic nanoflowers are densely packed aggregates of superferromagnetically coupled iron oxide nanocrystallites, which excel during magnetic hyperthermia experiments. Here, we investigate the nature of the moment coupling within a powder of such nanoflowers using spin-resolved small-angle neutron scattering. Within the powder, the nanoparticles are agglomerated to clusters, and we can show that the moments of neighboring nanoflowers tend to align parallel to each other. Thus, the whole system resembles a hierarchical magnetic nanostructure consisting of three distinct levels, i.e., (i) the ferrimagnetic nanocrystallites as building blocks, (ii) the superferromagnetic nanoflowers, and (iii) the supraferromagnetic clusters of nanoflowers. We surmise that such a supraferromagnetic coupling explains the enhanced magnetic hyperthermia performance in the case of interacting nanoflowers. [less ▲]

Detailed reference viewed: 94 (5 UL)
Full Text
Peer Reviewed
See detailEffect of grain-boundary diffusion process on the geometry of the grain microstructure of Nd−Fe−B nanocrystalline magnets
Titov, Ivan UL; Barbieri, Massimiliano; Bender, Philipp Florian UL et al

in Physical Review Materials (2019), 3(084410),

Detailed reference viewed: 71 (7 UL)
Full Text
Peer Reviewed
See detailMorphological and crystallographic orientation of hematite spindles in applied magnetic field
Zakutna, Dominika; Falke, Yannic; Dresen, Dominique et al

in Nanoscale (2019), 11

Detailed reference viewed: 109 (13 UL)
Full Text
Peer Reviewed
See detailMicrostructural-defect-induced Dzyaloshinskii-Moriya interaction
Michels, Andreas UL; Mettus, Denis; Titov, Ivan UL et al

in Physical Review. B, Condensed Matter (2019), 99

Detailed reference viewed: 149 (23 UL)
See detailAnalyzing moment correlations within clusters of magnetic nanoparticles
Bender, Philipp Florian UL

Scientific Conference (2019)

Detailed reference viewed: 40 (6 UL)
See detailRevealing moment correlations within nanoparticle clusters
Bender, Philipp Florian UL

Scientific Conference (2019)

Detailed reference viewed: 42 (9 UL)
Full Text
Peer Reviewed
See detailUsing the singular value decomposition to extract 2D correlation functions from scattering patterns
Bender, Philipp Florian UL; Zákutná, Dominika; Disch, Sabrina et al

in Acta Crystallographica. Section A, Foundations and Advances (2019), A75

Detailed reference viewed: 59 (2 UL)
Full Text
Peer Reviewed
See detailEvidence for the formation of nanoprecipitates with magnetically disordered regions in bulk Ni50Mn45In5 Heusler alloys
Benacchio, G.; Titov, Ivan UL; Malyeyev, Artem UL et al

in Physical Review. B, Condensed Matter and Materials Physics (2019), 99

Detailed reference viewed: 163 (21 UL)
Full Text
Peer Reviewed
See detailInfluence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
Bender, Philipp Florian UL; Fock, J.; Hansen, M. F. et al

in Nanotechnology (2018), 29

Detailed reference viewed: 105 (4 UL)