References of "Bauer, Peter"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMitochondrial DNA heteroplasmy distinguishes disease manifestation in PINK1/PRKN-linked Parkinson’s disease
Trinh, Joanne; Hicks, Andrew A.; König, Inke R. et al

in Brain (2022)

Biallelic mutations in PINK1/PRKN cause recessive Parkinson’s disease. Given the established role of PINK1/Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA (mtDNA) integrity and ... [more ▼]

Biallelic mutations in PINK1/PRKN cause recessive Parkinson’s disease. Given the established role of PINK1/Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA (mtDNA) integrity and inflammation as disease modifiers in carriers of mutations in these genes. MtDNA integrity was investigated in a large collection of biallelic (n = 84) and monoallelic (n = 170) carriers of PINK1/PRKN mutations, idiopathic Parkinson’s disease patients (n = 67) and controls (n = 90). In addition, we studied global gene expression and serum cytokine levels in a subset. Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mtDNA variant load (AUC = 0.83, CI:0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbor more heteroplasmic mtDNA variants in blood (p = 0.0006, Z = 3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in iPSC-derived (controls, n = 3; biallelic PRKN mutation carriers, n = 4) and postmortem (control, n = 1; biallelic PRKN mutation carrier, n = 1) midbrain neurons. Lastly, the heteroplasmic mtDNA variant load correlated with IL6 levels in PINK1/PRKN mutation carriers (r = 0.57, p = 0.0074). PINK1/PRKN mutations predispose individuals to mtDNA variant accumulation in a dose- and disease-dependent manner. [less ▲]

Detailed reference viewed: 26 (6 UL)
Full Text
See detailMitochondrial DNA heteroplasmy distinguishes disease manifestation in PINK1- and PRKN-linked Parkinson's disease 2022.05.17.22275087
Trinh, Joanne; Hicks, Andrew A.; Koenig, Inke R. et al

E-print/Working paper (2022)

Biallelic mutations in PINK1 and PRKN cause recessively inherited Parkinson's disease (PD). Though some studies suggest that PINK1/PRKN monoallelic mutations may not contribute to risk, deep phenotyping ... [more ▼]

Biallelic mutations in PINK1 and PRKN cause recessively inherited Parkinson's disease (PD). Though some studies suggest that PINK1/PRKN monoallelic mutations may not contribute to risk, deep phenotyping assessment showed that PINK1 or PRKN monoallelic pathogenic variants were at a significantly higher rate in PD compared to controls. Given the established role of PINK1 and Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA (mtDNA) integrity and inflammation as potential disease modifiers in carriers of mutations in these genes. MtDNA integrity, global gene expression and serum cytokine levels were investigated in a large collection of biallelic (n=84) and monoallelic (n=170) carriers of PINK1/PRKN mutations, iPD patients (n=67) and controls (n=90). Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mtDNA variant load (AUC=0.83, CI:0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbor more heteroplasmic mtDNA variants in blood (p=0.0006, Z=3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in iPSC-derived and postmortem midbrain neurons from biallelic PRKN-PD patients. Lastly, the heteroplasmic mtDNA variant load was found to correlate with IL6 levels in PINK1/PRKN mutation carriers (r=0.57, p=0.0074). PINK1/PRKN mutations predispose individuals to mtDNA variant accumulation in a dose- and disease-dependent manner. MtDNA variant load over time is a potential marker of disease manifestation in PINK1/PRKN mutation carriers.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThe authors wish to thank the many patients and their families who volunteered, and the efforts of the many clinical teams involved. Funding has been obtained from the German Research Foundation (ProtectMove; FOR 2488, GR 3731/5-1; SE 2608/2-1; KO 2250/7-1), the Luxembourg National Research Fund in the ATTRACT (Model-IPD, FNR9631103), NCER-PD (FNR11264123) and INTER programmes (ProtectMove, FNR11250962; MiRisk-PD, C17/BM/11676395, NB 4328/2-1), the BMBF (MitoPD), the Hermann and Lilly Schilling Foundation, the European Community (SysMedPD), the Canadian Institutes of Health Research (CIHR), Peter and Traudl Engelhorn Foundation. Initial studies in Tunisia on familial parkinsonism were in collaboration with Lefkos Middleton, Rachel Gibson, and the GlaxoSmithKline PD Programme Team (2002-2005). We would like to thank Dr Helen Tuppen from the Welcome Trust Centre for Mitochondrial Research, Newcastle University, UK for providing us with the plasmid p7D1. Moreover, this project was supported by the high throughput/high content screening platform and HPC facility at the Luxembourg Centre for Systems Biomedicine, and the University of Luxembourg.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:University of Lubeck Ethics CommitteeI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the present study are available upon reasonable request to the authors [less ▲]

Detailed reference viewed: 98 (6 UL)
Full Text
Peer Reviewed
See detailLIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol: Deep Phenotyping of an International Genetic Cohort
Usnich, Tatiana; Vollstedt, Eva-Juliane; Schell, Nathalie et al

in Frontiers in Neurology (2021), 12

Background: Pathogenic variants in the Leucine-rich repeat kinase 2 ( LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2 -linked PD is clinically indistinguishable ... [more ▼]

Background: Pathogenic variants in the Leucine-rich repeat kinase 2 ( LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2 -linked PD is clinically indistinguishable from idiopathic PD and inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity that differ across ethnicities and geographic regions. Objective: To systematically assess clinical signs and symptoms including non-motor features, comorbidities, medication and environmental factors in PD patients, unaffected LRRK2 pathogenic variant carriers, and controls. A further focus is to enable the investigation of modifiers of penetrance and expressivity of LRRK2 pathogenic variants using genetic and environmental data. Methods: Eligible participants are invited for a personal or online examination which comprises completion of a detailed eCRF and collection of blood samples (to obtain DNA, RNA, serum/plasma, immune cells), urine as well as household dust. We plan to enroll 1,000 participants internationally: 300 with LRRK2 -linked PD, 200 with LRRK2 pathogenic variants but without PD, 100 PD patients with pathogenic variants in the GBA or PRKN genes, 200 patients with idiopathic PD, and 200 healthy persons without pathogenic variants. Results: The eCRF consists of an investigator-rated (1 h) and a self-rated (1.5 h) part. The first part includes the Movement Disorder Society Unified Parkinson's Disease Rating, Hoehn \&Yahr, and Schwab \& England Scales, the Brief Smell Identification Test, and Montreal Cognitive Assessment. The self-rating part consists of a PD risk factor, food frequency, autonomic dysfunction, and quality of life questionnaires, the Pittsburgh Sleep Quality Inventory, and the Epworth Sleepiness as well as the Hospital Anxiety and Depression Scales. The first 15 centers have been initiated and the first 150 participants enrolled (as of March 25th, 2021). Conclusions: LIPAD is a large-scale international scientific effort focusing on deep phenotyping of LRRK2 -linked PD and healthy pathogenic variant carriers, including the comparison with additional relatively frequent genetic forms of PD, with a future perspective to identify genetic and environmental modifiers of penetrance and expressivity Clinical Trial Registration: ClinicalTrials.gov , NCT04214509. [less ▲]

Detailed reference viewed: 65 (1 UL)
Full Text
Peer Reviewed
See detailEIF4G1 is neither a strong nor a common risk factor for Parkinson's disease: evidence from large European cohorts
Huttenlocher, Johanna; Krüger, Rejko UL; Capetian, Philipp et al

in Journal of medical genetics (2014), 0

BACKGROUND: Missense mutations in the eukaryotic translation initiation factor 4-gamma 1 (EIF4G1) gene have previously been implicated in familial Parkinson's disease (PD). A large PD family with ... [more ▼]

BACKGROUND: Missense mutations in the eukaryotic translation initiation factor 4-gamma 1 (EIF4G1) gene have previously been implicated in familial Parkinson's disease (PD). A large PD family with autosomal-dominant segregation showed a heterozygous missense mutation and additional patients were found to have unique sequence variants that have not been observed in controls. Subsequent studies have reported contradictory findings. METHODS: We assessed the relevance of EIF4G1 mutations in a European cohort of 2146 PD patients. Of these, 2051 sporadic PD patients were screened for the reported p.Ala502Val and p.Arg1205His mutations. In addition, the complete coding region of EIF4G1 was directly sequenced in 95 familial PD patients with autosomal-dominant inheritance. Moreover, we imputed the p.Arg1205His substitution and tested for association with PD in the Icelandic population (93 698 samples). RESULTS: We did not observe the presence of the p.Ala502Val substitution in our cohort; however, the p.Arg1205His mutation was identified in one sporadic PD patient. The same mutation was also found in 76 Icelandic subjects older than 65 years using haplotype imputing. Only five of these subjects reported PD symptoms (OR 1.3, p=0.50). Thus, if causal, the p.Arg1205His EIF4G1 mutation has a low penetrance or a late onset manifestation. A novel variant p.Arg566Cys found in a patient with familial PD did not cosegregate with PD in all three affected siblings. All further recently published EIF4G1 mutations found in our cohort are likely to be benign polymorphisms. CONCLUSIONS: This is the largest genetic study of EIF4G1 mutations in PD. Our data do not support the EIF4G1 gene as a high-risk PD locus, neither for the familial nor the sporadic condition. Furthermore, the p.Arg1205His mutation is not significantly associated with increased risk of PD in the Icelandic population. Therefore, caution should be exercised when interpreting EIF4G1 genotyping results in isolated patients and PD families. In summary, diagnostic testing of EIF4G1 should not be recommended in clinical settings. [less ▲]

Detailed reference viewed: 119 (9 UL)
Full Text
Peer Reviewed
See detailDe novo mutations in hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS).
Karle, Kathrin N.; Biskup, Saskia; Schule, Rebecca et al

in Neurology (2013), 81(23), 2039-44

OBJECTIVE: Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is caused by autosomal-dominantly inherited mutations in the colony stimulating factor 1 receptor (CSF1R) gene, and is ... [more ▼]

OBJECTIVE: Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is caused by autosomal-dominantly inherited mutations in the colony stimulating factor 1 receptor (CSF1R) gene, and is clinically characterized by a progressive cognitive and motor decline leading to death within several years. METHODS: In a continuous series of 25 patients with adult-onset leukoencephalopathy of unknown cause, we genetically confirmed HDLS in 6 families. Affected and nonaffected individuals were examined clinically and by brain MRI studies. RESULTS: HDLS presented as prominent dementia and apraxia, often with extrapyramidal and pyramidal signs, rarely with ataxia. White matter MRI changes were detectable early in the disease course. Family history was negative in 4 of 6 index patients. In 2 of 6 index patients, we could confirm the occurrence of de novo mutations in the CSF1R gene. One family showed possible incomplete penetrance: the 69-year-old father of the index patient carried a CSF1R mutation but was clinically unaffected. In one family, the parents were apparently unaffected and not available for genetic testing. CONCLUSIONS: Typical clinical phenotype and early brain MRI alterations can help to guide the diagnosis of HDLS. Because we confirmed de novo mutations in one-third of patients with CSF1R mutations, this diagnosis should be considered even in the absence of a family history. Furthermore, we present evidence for reduced penetrance of a CSF1R mutation. These results have substantial impact for genetic counseling of asymptomatic individuals at risk and should foster research into disease-modifying factors. [less ▲]

Detailed reference viewed: 213 (0 UL)
Full Text
Peer Reviewed
See detailThe modulation of Amyotrophic Lateral Sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect.
Gispert, Suzana; Kurz, Alexander; Waibel, Stefan et al

in Neurobiology of Disease (2012), 45(1), 356-61

Full expansions of the polyglutamine domain (polyQ>/=34) within the polysome-associated protein ataxin-2 (ATXN2) are the cause of a multi-system neurodegenerative disorder, which usually presents as a ... [more ▼]

Full expansions of the polyglutamine domain (polyQ>/=34) within the polysome-associated protein ataxin-2 (ATXN2) are the cause of a multi-system neurodegenerative disorder, which usually presents as a Spino-Cerebellar Ataxia and is therefore known as SCA2, but may rarely manifest as Levodopa-responsive Parkinson syndrome or as motor neuron disease. Intermediate expansions (27</=polyQ</=33) were reported to modify the risk of Amyotrophic Lateral Sclerosis (ALS). We have now tested the reproducibility and the specificity of this observation. In 559 independent ALS patients from Central Europe, the association of ATXN2 expansions (30</=polyQ</=35) with ALS was highly significant. The study of 1490 patients with Parkinson's disease (PD) showed an enrichment of ATXN2 alleles 27/28 in a subgroup with familial cases, but the overall risk of sporadic PD was unchanged. No association was found between polyQ expansions in Ataxin-3 (ATXN3) and ALS risk. These data indicate a specific interaction between ATXN2 expansions and the causes of ALS, possibly through altered RNA-processing as a common pathogenic factor. [less ▲]

Detailed reference viewed: 178 (2 UL)
Full Text
Peer Reviewed
See detailDissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis.
Burbulla, Lena F.; Schelling, Carina; Kato, Hiroki et al

in Human molecular genetics (2010), 19(22), 4437-52

The mitochondrial chaperone mortalin has been linked to neurodegeneration in Parkinson's disease (PD) based on reduced protein levels in affected brain regions of PD patients and its interaction with the ... [more ▼]

The mitochondrial chaperone mortalin has been linked to neurodegeneration in Parkinson's disease (PD) based on reduced protein levels in affected brain regions of PD patients and its interaction with the PD-associated protein DJ-1. Recently, two amino acid exchanges in the ATPase domain (R126W) and the substrate-binding domain (P509S) of mortalin were identified in Spanish PD patients. Here, we identified a separate and novel variant (A476T) in the substrate-binding domain of mortalin in German PD patients. To define a potential role as a susceptibility factor in PD, we characterized the functions of all three variants in different cellular models. In vitro import assays revealed normal targeting of all mortalin variants. In neuronal and non-neuronal human cell lines, the disease-associated variants caused a mitochondrial phenotype of increased reactive oxygen species and reduced mitochondrial membrane potential, which were exacerbated upon proteolytic stress. These functional impairments correspond with characteristic alterations of the mitochondrial network in cells overexpressing mutant mortalin compared with wild-type (wt), which were confirmed in fibroblasts from a carrier of the A476T variant. In line with a loss of function hypothesis, knockdown of mortalin in human cells caused impaired mitochondrial function that was rescued by wt mortalin, but not by the variants. Our genetic and functional studies of novel disease-associated variants in the mortalin gene define a loss of mortalin function, which causes impaired mitochondrial function and dynamics. Our results support the role of this mitochondrial chaperone in neurodegeneration and underscore the concept of impaired mitochondrial protein quality control in PD. [less ▲]

Detailed reference viewed: 166 (4 UL)
Peer Reviewed
See detailA comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson's disease patients.
Wahl, Claudia; Kautzmann, Sabine; Krebiehl, Guido et al

in Journal of Neural Transmission (2008), 115(8), 1141-8

Dysfunction of proteasomal protein degradation is involved in neurodegeneration in Parkinson's disease (PD). Recently we identified the regulatory proteasomal subunit S6 ATPase as a novel interactor of ... [more ▼]

Dysfunction of proteasomal protein degradation is involved in neurodegeneration in Parkinson's disease (PD). Recently we identified the regulatory proteasomal subunit S6 ATPase as a novel interactor of synphilin-1, which is a substrate of the ubiquitin-ligase Parkin (PARK2) and an interacting protein of alpha-synuclein (PARK1). To further investigate a potential role in the pathogenesis of PD, we performed a detailed mutation analysis of the S6 ATPase gene in a large sample of 486 German sporadic and familial PD patients. Direct sequencing revealed two novel intronic variants. An insertion/deletion variant in intron 5 of the S6 ATPase gene was more frequent in patients compared to controls. Moreover, this variant was significantly more frequent in early-onset compared to late-onset PD patients. The identification of a genetic link between a regulatory proteasomal subunit and PD further underscores the relevance of disturbed protein degradation in PD. [less ▲]

Detailed reference viewed: 114 (1 UL)
Full Text
Peer Reviewed
See detailMitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease.
Abahuni, Nadine; Gispert, Suzana; Bauer, Peter et al

in Neuroscience Letters (2007), 414(2), 126-9

Mitochondrial dysfunction occurs early in late-onset sporadic Parkinson's disease (PD), but the mitochondrial protein network mediating PD pathogenesis is largely unknown. Mutations in the mitochondrial ... [more ▼]

Mitochondrial dysfunction occurs early in late-onset sporadic Parkinson's disease (PD), but the mitochondrial protein network mediating PD pathogenesis is largely unknown. Mutations in the mitochondrial serine-threonine kinase PINK1 have recently been shown to cause the early-onset autosomal recessive PARK6 variant of PD. We have now tested a candidate interactor protein of PINK1, the mitochondrial translation initiation factor 3 (MTIF3) for involvement in PD pathogenesis. In two independent case-control collectives, the c.798C>T polymorphism of the MTIF3 gene showed allelic association with PD, with a maximal significance of p=0.0073. An altered function of variant MTIF3 may affect the availability of mitochondrial encoded proteins, lead to oxidative stress and create vulnerability for PD. [less ▲]

Detailed reference viewed: 168 (3 UL)
Peer Reviewed
See detailTranscranial ultrasound in different monogenetic subtypes of Parkinson's disease.
Schweitzer, Katherine J.; Brussel, Theresa; Leitner, Petra et al

in Journal of neurology (2007), 254(5), 613-6

Hyperechogenicity of the substantia nigra (SN) has been found to be a typical sign in idiopathic Parkinson's disease (PD), prevalent in more than 90% of affected individuals. To see whether SN ... [more ▼]

Hyperechogenicity of the substantia nigra (SN) has been found to be a typical sign in idiopathic Parkinson's disease (PD), prevalent in more than 90% of affected individuals. To see whether SN hyperechogenicity is also characteristic for monogenetically caused PD, we investigated PD patients with alpha-synuclein, LRRK2, parkin, PINK1 and DJ-1 mutations by transcranial sonography (TCS). In all these patients the area of SN echogenicity was significantly larger than in healthy controls, but smaller, than in idiopathic PD. As SN hyperechogenicity could be related to an increased iron content of the SN, these findings suggest that iron may play a less significant role in the pathogenesis of monogenetically caused compared to idiopathic PD. [less ▲]

Detailed reference viewed: 123 (0 UL)
Peer Reviewed
See detailNovel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7).
Hering, Robert; Strauss, Karsten M.; Tao, Xiao et al

in Human mutation (2004), 24(4), 321-9

Mutations in the parkin gene have been identified as a common cause of autosomal recessive inherited Parkinson disease (PD) associated with early disease manifestation. However, based on linkage data ... [more ▼]

Mutations in the parkin gene have been identified as a common cause of autosomal recessive inherited Parkinson disease (PD) associated with early disease manifestation. However, based on linkage data, mutations in other genes contribute to the genetic heterogeneity of early-onset PD (EOPD). Recently, two mutations in the DJ1 gene were described as a second cause of autosomal recessive EOPD (PARK7). Analyzing the PARK7/DJ1 gene in 104 EOPD patients, we identified a third mutation, c.192G>C (p.E64D), associated with EOPD in a patient of Turkish ancestry and characterized the functional significance of this amino acid substitution. In the patient, a substantial reduction of dopamine uptake transporter (DAT) binding was found in the striatum using [(18)F]FP-CIT and PET, indicating a serious loss of presynaptic dopaminergic afferents. His sister, homozygous for E64D, was clinically unaffected but showed reduced dopamine uptake when compared with a clinically unaffected brother, who is heterozygous for E64D. We demonstrate by crystallography that the E64D mutation does not alter the structure of the DJ1 protein, however we observe a tendency towards decreased levels of the mutant protein when overexpressed in HEK293 or COS7 cells. Using immunocytochemistry in contrast to the homogenous nuclear and cytoplasmic staining in HEK293 cells overexpressing wild-type DJ1, about 5% of the cells expressing E64D and up to 80% of the cells expressing the recently described L166P mutation displayed a predominant nuclear localization of the mutant DJ1 protein. [less ▲]

Detailed reference viewed: 168 (3 UL)