References of "Balling, Rudi"
     in
Bookmark and Share    
Full Text
See detailEarly-to-mid idiopathic Parkinson’s disease shows a more cytotoxic but declined CD8-regulatory peripheral immune profile
Capelle, Christophe; Cire, Séverine; Hansen, Maxime UL et al

E-print/Working paper (2022)

Parkinson’s disease (PD) is the second most common neurodegenerative disease. Brain neuroinflammation plays a role in PD pathogenesis. However, the involvement of the peripheral immune system has not been ... [more ▼]

Parkinson’s disease (PD) is the second most common neurodegenerative disease. Brain neuroinflammation plays a role in PD pathogenesis. However, the involvement of the peripheral immune system has not been systematically investigated. Here we analyzed >700 combinatorial immunological features in fresh blood of 28 early-to-mid-stage PD patients and 24 matched controls. We found an enhanced cytotoxic immune profile in idiopathic PD patients (iPD), with a higher frequency of terminally-differentiated effector CD8 T (TEMRA), late-differentiated CD8+ natural killer T cells and neutrophils. This immune profile was intensified by elevated serum granzyme A, reduced percentages of CD8+FOXP3+ regulatory T cells and group 2 innate lymphoid cells with immunosuppressive or tolerance-inducing functions. The frequency of CD8 TEMRA was negatively correlated with disease duration, suggesting a contribution to PD pathogenesis. Our work provides a comprehensive map on disturbed peripheral adaptive and innate immune cells in early-to-mid iPD, proposing easily-accessible candidates for early diagnosis and treatments. [less ▲]

Detailed reference viewed: 37 (3 UL)
Full Text
Peer Reviewed
See detailQuantitative trait locus mapping identifies a locus linked to striatal dopamine and points to collagen IV alpha-6 chain as a novel regulator of striatal axonal branching in mice
Thomas, Melanie UL; Gui, Yujuan; Garcia, Pierre UL et al

in Genes, Brain, and Behavior (2021)

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to ... [more ▼]

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to loss of striatal dopamine (DA). Here, we measured DA concentration in the dorsal striatum of 32 members of Collaborative Cross (CC) family and their eight founder strains. Striatal DA varied greatly in founders, and differences were highly heritable in the inbred CC progeny. We identified a locus, containing 164 genes, linked to DA concentration in the dorsal striatum on chromosome X. We used RNAseq profiling of the ventral midbrain of two founders with substantial difference in striatal DA–C56BL/6 J and A/J—to highlight potential protein-coding candidates modulating this trait. Among the five differentially expressed genes within the locus, we found that the gene coding for the collagen IV alpha 6 chain (Col4a6) was expressed nine times less in A/J than in C57BL/6J. Using single cell RNA-seq data from developing human midbrain, we found that COL4A6 is highly expressed in radial glia-like cells and neuronal progenitors, indicating a role in neuronal development. Collagen IV alpha-6 chain (COL4A6) controls axogenesis in simple model organisms. Consistent with these findings, A/J mice had less striatal axonal branching than C57BL/6J mice. We tentatively conclude that DA concentration and axonal branching in dorsal striatum are modulated by COL4A6, possibly during development. Our study shows that genetic mapping based on an easily measured Central Nervous System (CNS) trait, using the CC population, combined with follow-up observations, can parse heritability of such a trait, and nominate novel functions for commonly expressed proteins. [less ▲]

Detailed reference viewed: 35 (6 UL)
Full Text
See detailDJ-1 depletion slows down immunoaging in T-cell compartments
Zeng, Ni; Capelle, Christophe; Baron, Alexandre et al

Report (2021)

Decline in immune function during aging increases susceptibility to different aging related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance ... [more ▼]

Decline in immune function during aging increases susceptibility to different aging related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T-cell subpopulations, still remain largely elusive. Here we show that loss of DJ-1 encoded by PARK7 /DJ-1, causing early-onset familial Parkinson’s disease (PD), unexpectedly delayed immunoaging in both human and mice. Compared with two gender-matched unaffected sibling carriers of similar ages, the index PD patient with DJ-1 deficiency showed a decline in many critical immunoaging features, including almost doubled frequencies of non-senescent T cells. The observation of a ‘younger’ immune system in the index patient was further consolidated by the results in aged DJ-1 knockout mice. Our data from bone marrow chimera models and adoptive transfer experiments demonstrated that DJ-1 regulates several immunoaging features via hematopoietic-intrinsic and naïve-CD8-intrinsic mechanisms. Our finding suggests an unrecognized critical role of DJ-1 in regulating immunoaging, discovering a potent target to interfere with immunoaging- and aging-associated diseases. [less ▲]

Detailed reference viewed: 61 (0 UL)
Full Text
Peer Reviewed
See detailCOVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.
Ostaszewski, Marek UL; Niarakis, Anna; Mazein, Alexander UL et al

in Molecular systems biology (2021), 17(10), 10387

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets ... [more ▼]

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective. [less ▲]

Detailed reference viewed: 72 (3 UL)