References of "Baggott, Rhiannon R"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSelective inhibition of plasma membrane calcium ATPase 4 improves angiogenesis and vascular reperfusion
Kurusamy, Sathishkumar; López-Maderuelo, Dolores; Little, Robert et al

in Journal of Molecular and Cellular Cardiology (2017), (109), 38-47

AIMS: Ischaemic cardiovascular disease is a major cause of morbidity and mortality worldwide. Despite promising results from pre-clinical animal models, VEGF-based strategies for therapeutic angiogenesis ... [more ▼]

AIMS: Ischaemic cardiovascular disease is a major cause of morbidity and mortality worldwide. Despite promising results from pre-clinical animal models, VEGF-based strategies for therapeutic angiogenesis have yet to achieve successful reperfusion of ischaemic tissues in patients. Failure to restore efficient VEGF activity in the ischaemic organ remains a major problem in current pro-angiogenic therapeutic approaches. Plasma membrane calcium ATPase 4 (PMCA4) negatively regulates VEGF-activated angiogenesis via inhibition of the calcineurin/NFAT signalling pathway. PMCA4 activity is inhibited by the small molecule aurintricarboxylic acid (ATA). We hypothesize that inhibition of PMCA4 with ATA might enhance VEGF-induced angiogenesis. METHODS AND RESULTS: We show that inhibition of PMCA4 with ATA in endothelial cells triggers a marked increase in VEGF-activated calcineurin/NFAT signalling that translates into a strong increase in endothelial cell motility and blood vessel formation. ATA enhances VEGF-induced calcineurin signalling by disrupting the interaction between PMCA4 and calcineurin at the endothelial-cell membrane. ATA concentrations at the nanomolar range, that efficiently inhibit PMCA4, had no deleterious effect on endothelial-cell viability or zebrafish embryonic development. However, high ATA concentrations at the micromolar level impaired endothelial cell viability and tubular morphogenesis, and were associated with toxicity in zebrafish embryos. In mice undergoing experimentally-induced hindlimb ischaemia, ATA treatment significantly increased the reperfusion of post-ischaemic limbs. CONCLUSIONS: Our study provides evidence for the therapeutic potential of targeting PMCA4 to improve VEGF-based pro-angiogenic interventions. This goal will require the development of refined, highly selective versions of ATA, or the identification of novel PMCA4 inhibitors. [less ▲]

Detailed reference viewed: 144 (2 UL)
Full Text
Peer Reviewed
See detailPlasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-mediated angiogenesis through interaction with calcineurin.
Baggott, Rhiannon R.; Alfranca, Arantzazu; Lopez-Maderuelo, Dolores et al

in Arteriosclerosis, thrombosis, and vascular biology (2014), 34(10), 2310-20

OBJECTIVE: Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF ... [more ▼]

OBJECTIVE: Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. APPROACH AND RESULTS: Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. CONCLUSIONS: Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis. [less ▲]

Detailed reference viewed: 108 (0 UL)
Full Text
Peer Reviewed
See detailDisruption of the interaction between PMCA2 and calcineurin triggers apoptosis and enhances paclitaxel-induced cytotoxicity in breast cancer cells.
Baggott, Rhiannon R.; Mohamed, Tamer M. A.; Oceandy, Delvac et al

in Carcinogenesis (2012), 33(12), 2362-8

Cancer is caused by defects in the signalling mechanisms that govern cell proliferation and apoptosis. It is well known that calcium-dependent signalling pathways play a critical role in cell regulation ... [more ▼]

Cancer is caused by defects in the signalling mechanisms that govern cell proliferation and apoptosis. It is well known that calcium-dependent signalling pathways play a critical role in cell regulation. A tight control of calcium homeostasis by transporters and channel proteins is required to assure a proper functioning of the calcium-sensitive signal transduction pathways that regulate cell growth and apoptosis. The plasma membrane calcium ATPase 2 (PMCA2) has been recently identified as a negative regulator of apoptosis that can play a significant role in cancer progression by conferring cells resistance to apoptosis. We have previously reported an inhibitory interaction between PMCA2 and the calcium-activated signalling molecule calcineurin in breast cancer cells. Here, we demonstrate that disruption of the PMCA2/calcineurin interaction in a variety of human breast cancer cells results in activation of the calcineurin/NFAT pathway, upregulation in the expression of the pro-apoptotic protein Fas Ligand and in a concomitant loss of cell viability. Reduction in cell viability is the consequence of an increase in cell apoptosis. Impairment of the PMCA2/calcineurin interaction enhances paclitaxel-mediated cytotoxicity of breast tumoral cells. Our results suggest that therapeutic modulation of the PMCA2/calcineurin interaction might have important clinical applications to improve current treatments for breast cancer patients. [less ▲]

Detailed reference viewed: 142 (0 UL)