References of "Arora, Chetan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDynamic Adaptation of Software-defined Networks for IoT Systems: A Search-based Approach
Shin, Seung Yeob UL; Nejati, Shiva UL; Sabetzadeh, Mehrdad UL et al

in Proceedings of the 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'20) (2020, May)

The concept of Internet of Things (IoT) has led to the development of many complex and critical systems such as smart emergency management systems. IoT-enabled applications typically depend on a ... [more ▼]

The concept of Internet of Things (IoT) has led to the development of many complex and critical systems such as smart emergency management systems. IoT-enabled applications typically depend on a communication network for transmitting large volumes of data in unpredictable and changing environments. These networks are prone to congestion when there is a burst in demand, e.g., as an emergency situation is unfolding, and therefore rely on configurable software-defined networks (SDN). In this paper, we propose a dynamic adaptive SDN configuration approach for IoT systems. The approach enables resolving congestion in real time while minimizing network utilization, data transmission delays and adaptation costs. Our approach builds on existing work in dynamic adaptive search-based software engineering (SBSE) to reconfigure an SDN while simultaneously ensuring multiple quality of service criteria. We evaluate our approach on an industrial national emergency management system, which is aimed at detecting disasters and emergencies, and facilitating recovery and rescue operations by providing first responders with a reliable communication infrastructure. Our results indicate that (1) our approach is able to efficiently and effectively adapt an SDN to dynamically resolve congestion, and (2) compared to two baseline data forwarding algorithms that are static and non-adaptive, our approach increases data transmission rate by a factor of at least 3 and decreases data loss by at least 70%. [less ▲]

Detailed reference viewed: 229 (31 UL)
Full Text
Peer Reviewed
See detailAutomated Demarcation of Requirements in Textual Specifications: A Machine Learning-Based Approach
Abualhaija, Sallam UL; Arora, Chetan; Sabetzadeh, Mehrdad UL et al

in Empirical Software Engineering (2020)

A simple but important task during the analysis of a textual requirements specification is to determine which statements in the specification represent requirements. In principle, by following suitable ... [more ▼]

A simple but important task during the analysis of a textual requirements specification is to determine which statements in the specification represent requirements. In principle, by following suitable writing and markup conventions, one can provide an immediate and unequivocal demarcation of requirements at the time a specification is being developed. However, neither the presence nor a fully accurate enforcement of such conventions is guaranteed. The result is that, in many practical situations, analysts end up resorting to after-the-fact reviews for sifting requirements from other material in a requirements specification. This is both tedious and time-consuming. We propose an automated approach for demarcating requirements in free-form requirements specifications. The approach, which is based on machine learning, can be applied to a wide variety of specifications in different domains and with different writing styles. %The approach is push-button, requiring no user-provided parameters before it can process a given specification. We train and evaluate our approach over an independently labeled dataset comprised of 33 industrial requirements specifications. Over this dataset, our approach yields an average precision of 81.2% and an average recall of 95.7%. Compared to simple baselines that demarcate requirements based on the presence of modal verbs and identifiers, our approach leads to an average gain of 16.4% in precision and 25.5% in recall. We collect and analyze expert feedback on the demarcations produced by our approach for industrial requirements specifications. The results indicate that experts find our approach useful and efficient in practice. We developed a prototype tool, named DemaRQ, in support of our approach. To facilitate replication, we make available to the research community this prototype tool alongside the non-proprietary portion of our training data. [less ▲]

Detailed reference viewed: 201 (11 UL)