References of "Antunes, Laurent"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHypoxia-induced Autophagy Drives Colorectal Cancer Initiation and Progression by Activating the PRKC/PKC-EZR (Ezrin) Pathway
Qureshi-Baig, Komal; Kuhn; Viry, Elodie et al

in Autophagy (2019)

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously ... [more ▼]

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enriched patient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients. [less ▲]

Detailed reference viewed: 206 (15 UL)
Full Text
Peer Reviewed
See detailThe microRNA-371~373 cluster represses colon cancer initiation and metastatic colonization by inhibiting the TGFBR2/ID1 signaling axis.
Ullmann, Pit UL; Rodriguez, Fabien UL; Schmitz, Martine UL et al

in Cancer research (2018)

The vast majority of colorectal cancer (CRC)-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key ... [more ▼]

The vast majority of colorectal cancer (CRC)-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key prerequisite to improve future treatment options. With this aim, we took advantage of different CRC cell lines and recently established primary cultures enriched in colon cancer stem cells (CSCs) - also known as tumor-initiating cells (TICs) - to identify genes and microRNAs (miRNAs) with regulatory functions in CRC progression. We show here that metastasis-derived TICs display increased capacity for self-renewal, transforming growth factor beta (TGF-beta) signaling activity, and reduced expression of the miR-371~373 cluster compared to non-metastatic cultures. TGF-beta receptor 2 (TGFBR2) and aldehyde dehydrogenase A1 (ALDH1A1) were identified as important target genes of the miR-371~373 cluster. In addition, TGFBR2 repression, either by direct knockdown or indirectly via overexpression of the entire miR-371~373 cluster, decreased tumor-initiating potential of TICs. We observed significantly reduced in vitro self-renewal activity as well as lowered tumor-initiation and metastatic outgrowth capacity in vivo following stable overexpression of the miR-371~373 cluster in different colon TIC cultures. Inhibitor of DNA binding 1 (ID1) was affected by both TGFBR2 and miR-371~373 cluster alterations. Functional sphere and tumor formation as well as metastatic dissemination assays validated the link between miR-371~373 and ID1. Altogether, our results establish the miR-371~373/TGFBR2/ID1 signaling axis as a novel regulatory mechanism of TIC self-renewal and metastatic colonization. [less ▲]

Detailed reference viewed: 160 (17 UL)
Full Text
Peer Reviewed
See detailLoss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence
Letellier, Elisabeth UL; Schmitz, Martine UL; Ginolhac, Aurélien UL et al

in British Journal of Cancer (2017), 117(11), 1689-1701

Background: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognized ... [more ▼]

Background: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognized to play a major role in trafficking and polarization of cells, have recently been reported to be closely associated with several types of cancer and might thus serve as potential prognostic markers in the context of CRC. Methods: We used a previously established meta-analysis of publicly available gene expression data to analyse the expression of different members of the Myosin V family, namely MYO5A, 5B, and 5C, in CRC. Using laser-microdissected material as well as tissue microarrays from paired human CRC samples, we validated both RNA and protein expression of MYO5B and its known adapter proteins (RAB8A and RAB25) in an independent patient cohort. Finally, we assessed the prognostic value of both MYO5B and its adapter-coupled combinatorial gene expression signatures. Results: The meta-analysis as well as an independent patient cohort study revealed a methylation-independent loss of MYO5B expression in CRC that matched disease progression. Although MYO5B mutations were identified in a small number of patients, these cannot be solely responsible for the common down-regulation observed in CRC patients. Significantly, CRC patients with low MYO5B expression displayed shorter overall, disease- and metastasis-free survival, a trend that was further reinforced when RAB8A expression was also taken into account. Conclusions: Our data identifies MYO5B as a powerful prognostic biomarker in CRC, especially in early stages (stages I and II), which might help stratifying patients with stage II for adjuvant chemotherapy. [less ▲]

Detailed reference viewed: 355 (41 UL)
Full Text
Peer Reviewed
See detailPlatelet mitochondrial membrane potential in Parkinson's disease.
Antony, Paul UL; Boyd, Olga UL; Trefois, Christophe UL et al

in Annals of clinical and translational neurology (2015), 2(1), 67-73

OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial ... [more ▼]

OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced conflicting data. We considered the electron transport chain as a complex system with mitochondrial membrane potential as an integrative indicator for mitochondrial fitness. METHODS: Twenty-five IPD patients (nine females; mean disease duration, 6.2 years) and 16 healthy age-matched controls (12 females) were recruited. Live platelets were purified using magnetic-activated cell sorting (MACS) and single-cell data on mitochondrial membrane potential (Deltapsi) were measured by cytometry and challenged with a protonophore agent. RESULTS: Functional mitochondrial membrane potential was detected in all participants. The challenge test reduced the membrane potential in all IPD patients and controls (P < 0.001). However, the response to the challenge was not significantly different between patients and controls. INTERPRETATION: While the reported protonophore challenge assay is a valid marker of overall mitochondrial function in live platelets, intact mitochondrial membrane potential in platelets derived from IPD patients suggests that presumed mitochondrial enzymatic deficiencies are compensable in this cell type. In consequence, mitochondrial membrane potential in platelets cannot be used as a diagnostic biomarker for nonstratified IPD but should be further explored in potential Parkinson's disease subtypes and tissues with higher energy demands. [less ▲]

Detailed reference viewed: 206 (6 UL)
Full Text
Peer Reviewed
See detailPlatelet activation and aggregation promote lung inflammation and influenza virus pathogenesis.
Le, Vuong Ba; Schneider, Jochen UL; Boergeling, Yvonne et al

in American journal of respiratory and critical care medicine (2015), 191(7), 804-19

RATIONALE: The hallmark of severe influenza virus infection is excessive inflammation of the lungs. Platelets are activated during influenza, but their role in influenza virus pathogenesis and ... [more ▼]

RATIONALE: The hallmark of severe influenza virus infection is excessive inflammation of the lungs. Platelets are activated during influenza, but their role in influenza virus pathogenesis and inflammatory responses is unknown. OBJECTIVES: To determine the role of platelets during influenza A virus infections and propose new therapeutics against influenza. METHODS: We used targeted gene deletion approaches and pharmacologic interventions to investigate the role of platelets during influenza virus infection in mice. MEASUREMENTS AND MAIN RESULTS: Lungs of infected mice were massively infiltrated by aggregates of activated platelets. Platelet activation promoted influenza A virus pathogenesis. Activating protease-activated receptor 4, a platelet receptor for thrombin that is crucial for platelet activation, exacerbated influenza-induced acute lung injury and death. In contrast, deficiency in the major platelet receptor glycoprotein IIIa protected mice from death caused by influenza viruses, and treating the mice with a specific glycoprotein IIb/IIIa antagonist, eptifibatide, had the same effect. Interestingly, mice treated with other antiplatelet compounds (antagonists of protease-activated receptor 4, MRS 2179, and clopidogrel) were also protected from severe lung injury and lethal infections induced by several influenza strains. CONCLUSIONS: The intricate relationship between hemostasis and inflammation has major consequences in influenza virus pathogenesis, and antiplatelet drugs might be explored to develop new antiinflammatory treatment against influenza virus infections. [less ▲]

Detailed reference viewed: 153 (2 UL)