![]() Aleksandrova, Ralitsa ![]() in Langmuir (2014), 30 The demixing process of aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions can occur either via a nucleation and growth process or via spinodal decomposition. The ensuing self-assembly, leading to ... [more ▼] The demixing process of aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions can occur either via a nucleation and growth process or via spinodal decomposition. The ensuing self-assembly, leading to heterogeneous morphologies within the PNIPAM solution, is codetermined by kinetic processes caused by molecular transport. By subjecting PNIPAM solutions to cyclic changes in temperature leading to repeated crossing of the demixing transition, we are able to assess the importance of kinetics as well as of overheating and supercooling of the phase transition within the metastable range delimited by the binodal and spinodal lines. First indications about the location of these stability limits for the low- and high-temperature phases, separated by about 1.6 K, could be gained by detailed kinetic studies of the refractive index. These investigations are made possible due to the novel technique of temperature-modulated optical refractometry. [less ▲] Detailed reference viewed: 155 (3 UL)![]() Philipp, Martine ![]() ![]() ![]() in Soft Matter (2014), 10(37), 7297-7305 The phase separation of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions is known to strongly affect their volume expansion behaviour and the elastic moduli, as the latter are strongly coupled to ... [more ▼] The phase separation of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions is known to strongly affect their volume expansion behaviour and the elastic moduli, as the latter are strongly coupled to the macroscopic order parameter. On the molecular scale, considerable changes in H-bonding and hydrophobic interactions, as well as in the structure govern the demixing process. However, the relationship between the molecular and macroscopic order parameters is unclear for such complex phase-separating solutions. We contribute to the clarification of this problem by relating optical to volumetric properties across the demixing transition of dilute to concentrated aqueous PNIPAM solutions. Far from the demixing temperature, the temperature dependence of the refractive index is predominantly determined by thermal expansion. In the course of phase separation, the refractive index is dominated by the anomalous behaviour of the specific refractivity, which reflects the spatio-temporally averaged changes in molecular interactions and the structural reorganization of the demixing solutions. Moreover, the presence of relaxation processes is studied by the complex expansion coefficient using the novel technique of temperature modulated optical refractometry. [less ▲] Detailed reference viewed: 165 (2 UL)![]() Philipp, Martine ![]() ![]() ![]() in Soft Matter (2013), 9 Elastic nonlinearities are particularly relevant for soft materials because of their inherently small linear elasticity. Nonlinear elastic properties may even take over the leading role for the ... [more ▼] Elastic nonlinearities are particularly relevant for soft materials because of their inherently small linear elasticity. Nonlinear elastic properties may even take over the leading role for the transformation at mechanical instabilities accompanying many phase transitions in soft matter. Because of inherent experimental difficulties, only little is known about third order (nonlinear) elastic constants within liquids, gels and polymers. Here we show that a key concept to access third order elasticity in soft materials is the determination of mode Gr¨uneisen parameters. We report the first direct observation of third order elastic constants across mechanical instabilities accompanying the liquid–liquid demixing transition of semi-dilute aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions. Immense elastic nonlinearities, leading to a strong strain-softening in the phase-separating PNIPAM solutions, are observed. Molecular mechanisms, which may be responsible for these immense elastic nonlinearities, are discussed. The importance of third order elastic constants in comparison to second order (linear) elastic constants in the demixing PNIPAM solutions evidences the need to focus more on the general role played by nonlinear elasticity at phase transitions within synthetic and biological liquids and gels. [less ▲] Detailed reference viewed: 144 (8 UL)![]() ; Müller, Ulrich ![]() ![]() in Soft Matter (2012), 8 Mechanical instabilities accompanying the demixing transition of semi-dilute aqueous poly(Nisopropylacrylamide) (PNIPAM) solutions are probed for the first time with Brillouin spectroscopy, densitometry ... [more ▼] Mechanical instabilities accompanying the demixing transition of semi-dilute aqueous poly(Nisopropylacrylamide) (PNIPAM) solutions are probed for the first time with Brillouin spectroscopy, densitometry and refractometry. The particular role of the elastic moduli and the mass density at this coil-to-globule transition followed by molecular aggregation is investigated. Even though the demixing transition of PNIPAM solutions is denoted as a volume phase transition, it turns out that this transition is governed by the elastic properties, instead of the volume properties. This is consistent with earlier findings made for the demixing transition in chemically cross-linked PNIPAM hydrogels. Above the demixing temperature, Brillouin spectroscopy discriminates compact PNIPAM-rich agglomerates with sizes larger than 200 nm. Interestingly, these agglomerates possess a sharp distribution of elastic moduli, which can be attributed without any doubt to a material with gel-like mechanical consistency. Thus the phase-separated PNIPAM-rich agglomerates are not in the glassy state. [less ▲] Detailed reference viewed: 140 (2 UL)![]() Philipp, Martine ![]() ![]() Poster (2011, October 10) Detailed reference viewed: 64 (3 UL)![]() Philipp, Martine ![]() ![]() Poster (2011, June 08) Detailed reference viewed: 49 (3 UL)![]() Philipp, Martine ![]() ![]() Poster (2011, June 01) Detailed reference viewed: 67 (3 UL) |
||