References of "Al-Hraishawi, Hayder 50033825"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEnergy-Efficient Service-Aware Multi-Connectivity Scheduler for Uplink Multi-Layer Non-Terrestrial Networks
Dazhi, Michael UL; Al-Hraishawi, Hayder UL; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE Transactions on Green Communications and Networking (2023)

This paper introduces the concept of energy efficiency (EE) in the uplink with the capability of multi-connectivity (MC) in a multi-orbit non-terrestrial network (NTN), where user terminals (UTs) can be ... [more ▼]

This paper introduces the concept of energy efficiency (EE) in the uplink with the capability of multi-connectivity (MC) in a multi-orbit non-terrestrial network (NTN), where user terminals (UTs) can be simultaneously served by more than one satellite to achieve higher peak throughput at reduced energy consumption. This concept also considers the service classification of the users, so that network dimensioning is performed in order to satisfy the quality of service (QoS) requirement of users. MC can increase throughput, but this entails increased power consumption at user terminal for uplink transmissions. To this end, an energy-efficient service-aware multi-connectivity (EE-SAMC) scheduling algorithm is developed in this paper to improve the EE of uplink communications. EE-SAMC uses available radio resources and propagation information to intelligently define a dynamic resource allocation pattern, that optimally routes traffic so as to reduce the energy consumption at the UT while ensuring QoS is maximized. EE-SAMC is designed based on the formulation of a non-convex combinatorial problem, it is solved in two ways involving firstly an optimization solution and secondly a heuristic approach. The effectiveness of EE-SAMC is compared with random allocation, round robin and heuristic schedulers in terms of EE, throughput and delay; EE-SAMC outperforms all schedulers. [less ▲]

Detailed reference viewed: 46 (4 UL)
Full Text
Peer Reviewed
See detailTerminal-Aware Multi-Connectivity Scheduler for Uplink Multi-Layer Non-Terrestrial Networks
Dazhi, Michael UL; Al-Hraishawi, Hayder UL; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE Global Communications Conference (Globecom) (2023, January 12)

This paper introduces the concept of multi-connectivity (MC) to the multi-orbit non-terrestrial networks (NTNs), where user terminals can be served by more than one satellite to achieve higher peak ... [more ▼]

This paper introduces the concept of multi-connectivity (MC) to the multi-orbit non-terrestrial networks (NTNs), where user terminals can be served by more than one satellite to achieve higher peak throughput. MC is a technique initially introduced by the 3rd Generation Partnership Project (3GPP) for terrestrial communications in 4G and 5G, it has shown much gain in the terrestrial domain and this paper explores areas where this concept can benefit the satellite domain. MC can increase throughput, but this entails increased power consumption at user terminal for uplink transmissions. The energy efficiency of uplink communications can be improved by designing efficient scheduling schemes, and to this end, we developed a terminal aware multi-connectivity scheduling algorithm. This proposed algorithm uses the available radio resources and propagation information to intelligently define a dynamic resource allocation pattern, that optimally routes traffic so as to maximize uplink data rate while minimizing the energy consumption at the UT. The algorithm operates with the terminal differentiating multi-layer NTN resource scheduling architecture, which has a softwarized dispatcher at the network layer that classifies and differentiates the packets based on terminal type. The performance of the proposed algorithm was compared with round robin and joint carrier schedulers in terms of uplink data rate and energy efficiency. We also provide architectural design of implementable schedulers for multi-orbital satellite networks that can operate with different classes of terminals. [less ▲]

Detailed reference viewed: 160 (42 UL)
Full Text
See detailCharacterizing and Utilizing the Interplay between Quantum Technologies and Non-Terrestrial Networks
Al-Hraishawi, Hayder UL; Junaid, ur Rehman; Mohsen, Razavi et al

in IEEE Transactions on Quantum Engineering (2023)

Quantum technologies have been widely recognized as one of the milestones towards the ongoing digital transformation, which will also trigger new disruptive innovations. Quantum technologies encompassing ... [more ▼]

Quantum technologies have been widely recognized as one of the milestones towards the ongoing digital transformation, which will also trigger new disruptive innovations. Quantum technologies encompassing quantum computing, communications, and sensing offer an interesting set of advantages such as unconditional security and ultra-fast computing capabilities. However, deploying quantum services at a global scale requires circumventing the limitations due to the geographical boundaries and terrestrial obstacles, which can be adequately addressed by considering non-terrestrial networks (NTNs). In the recent few years, establishing multi-layer NTNs has been extensively studied to integrate space-airborne-terrestrial communications systems, particularly by the international standardization organizations such as the third-generation partnership project (3GPP) and the international telecommunication union (ITU), in order to support future wireless ecosystems. Indeed, amalgamating quantum technologies and NTNs will scale up the quantum communications ranges and provide unprecedented levels of security and processing solutions that are safer and faster than the traditional offerings. This paper provides some insights into the interplay between the evolving NTN architectures and quantum technologies with a particular focus on the integration challenges and their potential solutions for enhancing the quantum-NTN interoperability among various space-air-ground communications nodes. The emphasis is on how the quantum technologies can benefit from satellites and aerial platforms as an integrated network and vice versa. Moreover, a set of future research directions and new opportunities are identified. [less ▲]

Detailed reference viewed: 83 (12 UL)
Full Text
Peer Reviewed
See detailDeep Learning-Based Device-Free Localization in Wireless Sensor Networks
Abdullah, Osamah; Al-Hraishawi, Hayder UL; Chatzinotas, Symeon UL

Scientific Conference (2023)

Location-based services are witnessing a rise in popularity owing to their key features of delivering personalized digital experience. The recent developments in wireless sensing techniques make the ... [more ▼]

Location-based services are witnessing a rise in popularity owing to their key features of delivering personalized digital experience. The recent developments in wireless sensing techniques make the realization of device-free localization (DFL) feasible within wireless sensor network (WSN) architectures. The DFL is an emerging technology that utilizes radio signal information for detecting and positioning a passive movable target without attached devices. However, determining the characteristics of the massive raw signals and extracting meaningful discriminative features relevant to the localization are highly intricate tasks due to the different patterns associated with different locations. To overcome these issues, deep learning (DL) techniques can be utilized here owing to their remarkable performance gains in similar practical problems. In this direction, we propose a DFL framework consists of multiple convolutional neural network (CNN) layers along with deep autoencoders based on the restricted Boltzmann machines (RBM) to construct a convolutional deep belief network (CDBN) for features recognition and extracting. Each CNN layer has stochastic pooling to sample down the feature map and reduced the dimensions of the required data without losing important information. This dimensionality reduction can alleviate the heavy computation while ensuring precise localization. The proposed framework is validated using real experimental dataset. The results show that the proposed model is able to achieve a high accuracy of 98% with reduced data dimensions and low signal-to-noise ratios (SNRs). [less ▲]

Detailed reference viewed: 76 (5 UL)
Full Text
Peer Reviewed
See detailAn Overview of Channel Models for NGSO Satellites
Monzon Baeza, Victor UL; Lagunas, Eva UL; Al-Hraishawi, Hayder UL et al

Scientific Conference (2022, September)

Detailed reference viewed: 128 (26 UL)
Full Text
Peer Reviewed
See detailUplink Capacity Optimization for High Throughput Satellites using SDN and Multi-Orbital Dual Connectivity
Dazhi, Michael UL; Al-Hraishawi, Hayder UL; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE International Conference on Communications (ICC) (2022, July 11)

Dual Connectivity is a key approach to achieving optimization of throughput and latency in heterogeneous networks. Originally a technique introduced by the 3rd Generation Partnership Project (3GPP) for ... [more ▼]

Dual Connectivity is a key approach to achieving optimization of throughput and latency in heterogeneous networks. Originally a technique introduced by the 3rd Generation Partnership Project (3GPP) for terrestrial communications, it is not been widely explored in satellite systems. In this paper, Dual Connectivity is implemented in a multi-orbital satellite network, where a network model is developed by employing the diversity gains from Dual Connectivity and Carrier Aggregation for the enhancement of satellite uplink capacity. An introduction of software defined network controller is performed at the network layer coupled with a carefully designed hybrid resource allocation algorithm which is implemented strategically. The algorithm performs optimum dynamic flow control and traffic steering by considering the availability of resources and the channel propagation information of the orbital links to arrive at a resource allocation pattern suitable in enhancing uplink system performance. Simulation results are shown to evaluate the achievable gains in throughput and latency; in addition we provide useful insight in the design of multi-orbital satellite networks with implementable scheduler design. [less ▲]

Detailed reference viewed: 241 (94 UL)
Full Text
See detailPerformance Evaluation of Forward Link Packet Scheduling in Satellite Communication Systems with Carrier Aggregation
Al-Hraishawi, Hayder UL; Lagunas, Eva UL; Kumar, Sumit UL et al

Scientific Conference (2022)

The rapidly growing demand for increased data rates and spectrum scarcity in satellite communication systems require new paradigms to effectively utilize radio resources. Of many candidate techniques ... [more ▼]

The rapidly growing demand for increased data rates and spectrum scarcity in satellite communication systems require new paradigms to effectively utilize radio resources. Of many candidate techniques, carrier aggregation (CA) is a promising solution that combines multiple carriers across the available spectrum to achieve a substantial increase in peak data rate and improve user experience. The concept of CA was introduced in 3GPP standards for the terrestrial communication systems and has been successfully deployed and commercialized worldwide. Recently, satellite communication community has investigated the requirements for adopting CA technique to satellite infrastructures. In this setting, aggregating multiple heterogeneous satellite links to boost a single-user peak throughput requires an efficient data packet scheduler at the gateway in order to avoid the out-of-order packet issues and the subsequent queuing delays at the receiver side. Thereby, several research efforts have been devoted to circumvent this challenge through developing packet schedulers that are aiming at delivering data packets without perturbing their original transmission order. In this paper, the performance of the developed schedulers is evaluated using end-to-end system simulations to investigate the impact of different network metrics. The obtained results demonstrate the design tradeoffs and summarize the pros and cons of the schedulers. [less ▲]

Detailed reference viewed: 154 (15 UL)
Full Text
See detailEnergy Harvesting from Jamming Attacks in Multi-User Massive MIMO Networks
Al-Hraishawi, Hayder UL; Abdullah, Osamah; Chatzinotas, Symeon UL et al

in IEEE Transactions on Green Communications and Networking (2022)

5G communication systems enable new functions and major performance improvements but at the cost of tougher energy requirements on mobile devices. One of the effective ways to address this issue along ... [more ▼]

5G communication systems enable new functions and major performance improvements but at the cost of tougher energy requirements on mobile devices. One of the effective ways to address this issue along with alleviating the environmental effects associated with the inevitable large increase in energy usage is the energy-neutral systems, which operate with the energy harvested from radio-frequency (RF) transmissions. In this direction, this paper investigates the notion of harvesting the ambient RF signals from an unusual source. Specifically, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to exploit the jamming transmissions as an energy source to be harvested at the legitimate users. To this end, the achievable uplink sum rate expressions are derived in closed-form for two different antenna configurations. Two optimal time-switching schemes are also proposed based on maximum sum rate and user-fairness criteria. Besides, the essential trade-off between the harvested energy and achievable sum rate are quantified in closed-form. Our analysis reveals that the massive MIMO systems can exploit the surrounding RF signals of the jamming attacks for boosting the amount of harvested energy at the served users. Finally, numerical results illustrate the effectiveness of the derived closed-form expressions through simulations. [less ▲]

Detailed reference viewed: 139 (11 UL)
Full Text
Peer Reviewed
See detailCombining Time-Flexible Satellite Payload with Precoding: The Cluster Hopping Approach
Gupta, Vaibhav Kumar UL; Ha, Vu Nguyen UL; Lagunas, Eva UL et al

in IEEE Transactions on Vehicular Technology (2022)

High throughput geostationary (GEO) satellite systems are characterized by a multi-beam wide coverage. However, developing efficient resource management mechanisms to meet the heterogeneous user traffic ... [more ▼]

High throughput geostationary (GEO) satellite systems are characterized by a multi-beam wide coverage. However, developing efficient resource management mechanisms to meet the heterogeneous user traffic demands remains an open challenge for satellite operators. Furthermore, the spectrum shortage and the ever increasing demands claim for more aggressive frequency reuse. In this paper, we combine the time-flexible payload capabilities known as beam hopping (BH) with precoding techniques in order to satisfy user traffic requests in areas of high demand (i.e. hot-spot areas). The proposed framework considers a flexible beam-cluster hopping where adjacent beams can be activated if needed, forming clusters with various shapes and sizes. In this context, we present three strategies to design the beam illumination patterns. First, a max-min user demand fairness satisfaction problem; second, a penalty-based optimization is considered to penalize the occurrence of adjacent beams in an attempt to avoid precoding whenever possible. Third, seeking a low-complexity design, we propose a queuing-based approach to solve the problem in a time-slot by time-slot basis trying to provide service to users based on the requested demands. The three methods are discussed in detailed and evaluated via numerical simulations, confirming their effectiveness versus benchmark schemes and identifying the pros and cons of each proposed design. [less ▲]

Detailed reference viewed: 83 (22 UL)
Full Text
Peer Reviewed
See detailA Survey on Non-Geostationary Satellite Systems: The Communication Perspective
Al-Hraishawi, Hayder UL; Chougrani, Houcine UL; Kisseleff, Steven UL et al

in IEEE Communications Surveys & Tutorials (2022)

The next phase of satellite technology is being characterized by a new evolution in non-geostationary orbit (NGSO) satellites, which conveys exciting new communication capabilities to provide non ... [more ▼]

The next phase of satellite technology is being characterized by a new evolution in non-geostationary orbit (NGSO) satellites, which conveys exciting new communication capabilities to provide non-terrestrial connectivity solutions and to support a wide range of digital technologies from various industries. NGSO communication systems are known for a number of key features such as lower propagation delay, smaller size, and lower signal losses in comparison to the conventional geostationary orbit (GSO) satellites, which can potentially enable latency-critical applications to be provided through satellites. NGSO promises a substantial boost in communication speed and energy efficiency, and thus, tackling the main inhibiting factors of commercializing GSO satellites for broader utilization. The promised improvements of NGSO systems have motivated this paper to provide a comprehensive survey of the state-of-the-art NGSO research focusing on the communication prospects, including physical layer and radio access technologies along with the networking aspects and the overall system features and architectures. Beyond this, there are still many NGSO deployment challenges to be addressed to ensure seamless integration not only with GSO systems but also with terrestrial networks. These unprecedented challenges are also discussed in this paper, including coexistence with GSO systems in terms of spectrum access and regulatory issues, satellite constellation and architecture designs, resource management problems, and user equipment requirements. Finally, we outline a set of innovative research directions and new opportunities for future NGSO research. [less ▲]

Detailed reference viewed: 66 (5 UL)
Full Text
Peer Reviewed
See detailChannel Estimation for UAV Communication Systems Using Deep Neural Networks
Al-Gburi, Ahmed; Abdullah, Osamah; Sarhan, Akram et al

in Drones (2022)

Channel modeling of unmanned aerial vehicles (UAVs) from wireless communications has gained great interest for rapid deployment in wireless communication. The UAV channel has its own distinctive ... [more ▼]

Channel modeling of unmanned aerial vehicles (UAVs) from wireless communications has gained great interest for rapid deployment in wireless communication. The UAV channel has its own distinctive characteristics compared to satellite and cellular networks. Many proposed techniques consider and formulate the channel modeling of UAVs as a classification problem, where the key is to extract the discriminative features of the UAV wireless signal. For this issue, we propose a framework of multiple Gaussian–Bernoulli restricted Boltzmann machines (GBRBM) for dimension reduction and pre-training utilization incorporated with an autoencoder-based deep neural network. The developed system used UAV measurements of a town’s already existing commercial cellular network for training and validation. To evaluate the proposed approach, we run ray-tracing simulations in the program Remcom Wireless InSite at a distinct frequency of 28 GHz and used them for training and validation. The results demonstrate that the proposed method is accurate in channel acquisition for various UAV flying scenarios and outperforms the conventional DNNs. [less ▲]

Detailed reference viewed: 56 (3 UL)
Full Text
Peer Reviewed
See detailJoint Beam Hopping and Carrier Aggregation in High Throughput Multi-Beam Satellite Systems
Kibria, Mirza; Al-Hraishawi, Hayder UL; Lagunas, Eva UL et al

in IEEE Access (2022)

Beam hopping (BH) and carrier aggregation (CA) are two promising technologies for the next generation satellite communication systems to achieve several orders of magnitude increase in system capacity and ... [more ▼]

Beam hopping (BH) and carrier aggregation (CA) are two promising technologies for the next generation satellite communication systems to achieve several orders of magnitude increase in system capacity and to significantly improve the spectral efficiency. While BH allows a great flexibility in adapting the offered capacity to the heterogeneous demand, CA further enhances the user quality-of-service (QoS) by allowing it to pool resources from multiple adjacent beams. In this paper, we consider a multi-beam high throughput satellite (HTS) system that employs BH in conjunction with CA to capitalize on the mutual interplay between both techniques. Particularly, an innovative joint BH-CA scheme is proposed and analyzed in this work to utilize their individual competencies. This includes designing an efficient joint time-space beam illumination pattern for BH and multi-user aggregation strategy for CA. Through this, user-carrier assignment, transponder filling-rates, beams hopping pattern, and illumination duration are all simultaneously optimized by formulating a joint optimization problem as a multi-objective mixed integer linear programming problem (MINLP). Simulation results are provided to corroborate our analysis, demonstrate the design tradeoffs, and point out the potentials of the proposed joint BH-CA concept. Advantages of our BH-CA scheme versus the conventional BH method without employing CA are investigated and presented under the same system circumstances. [less ▲]

Detailed reference viewed: 77 (1 UL)
Full Text
Peer Reviewed
See detailExploiting Jamming Attacks for Energy Harvesting in Massive MIMO Systems
Al-Hraishawi, Hayder UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

Scientific Conference (2021, June)

In this paper, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to ... [more ▼]

In this paper, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to exploit the jamming transmissions as an energy source to be harvested at the legitimate users. To this end, the achievable uplink sum rate expressions are derived in closed-form for two different antenna configurations. An optimal time-switching policy is also proposed to ensure user-fairness in terms of both harvested energy and achievable rate. Besides, the essential trade-off between the harvested energy and achievable sum rate are quantified in closed-form. Our analysis reveals that the massive MIMO systems can make use of RF signals of the jamming attacks for boosting the amount of harvested energy at the served users. Numerical results illustrate the effectiveness of the derived closed-form expressions over Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 97 (6 UL)
Full Text
Peer Reviewed
See detailBroadband Non-Geostationary Satellite Communication Systems: Research Challenges and Key Opportunities
Al-Hraishawi, Hayder UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

Scientific Conference (2021, June)

Besides conventional geostationary (GSO) satellite broadband communication services, non-geostationary (NGSO) satellites are envisioned to support various new communication use cases from countless ... [more ▼]

Besides conventional geostationary (GSO) satellite broadband communication services, non-geostationary (NGSO) satellites are envisioned to support various new communication use cases from countless industries. These new scenarios bring many unprecedented challenges that will be discussed in this paper alongside with several potential future research opportunities. NGSO systems are known for various advantages, including their important features of low cost, lower propagation delay, smaller size, and lower losses in comparison to GSO satellites. However, there are still many deployment challenges to be tackled to ensure seamless integration not only with GSO systems but also with terrestrial networks. In this paper, we discuss several key challenges including satellite constellation and architecture designs, coexistence with GSO systems in terms of spectrum access and regulatory issues, resource management algorithms, and NGSO networking requirements. Additionally, the latest progress in provisioning secure communication via NGSO systems is discussed. Finally, this paper identifies multiple important open issues and research directions to inspire further studies towards the next generation of satellite networks. [less ▲]

Detailed reference viewed: 102 (13 UL)
Full Text
Peer Reviewed
See detailPrecoded Cluster Hopping for Multibeam GEO Satellite Communication Systems
Lagunas, Eva UL; Kibria, Mirza Golam; Al-Hraishawi, Hayder UL et al

in Frontiers in Signal Processing (2021)

Detailed reference viewed: 240 (16 UL)
Full Text
Peer Reviewed
See detailScheduling Design and Performance Analysis of Carrier Aggregation in Satellite Communication Systems
Al-Hraishawi, Hayder UL; Maturo, Nicola UL; Lagunas, Eva UL et al

in IEEE Transactions on Vehicular Technology (2021)

Carrier Aggregation is one of the vital approaches to achieve several orders of magnitude increase in peak data rates. While carrier aggregation benefits have been extensively studied in cellular networks ... [more ▼]

Carrier Aggregation is one of the vital approaches to achieve several orders of magnitude increase in peak data rates. While carrier aggregation benefits have been extensively studied in cellular networks, its application to satellite systems has not been thoroughly explored yet. Carrier aggregation can offer an enhanced and more consistent quality of service for users throughout the satellite coverage via combining multiple carriers, utilizing the unused capacity at other carriers, and enabling effective interference management. Furthermore, carrier aggregation can be a prominent solution to address the issue of the spatially heterogeneous satellite traffic demand. This paper investigates introducing carrier aggregation to satellite systems from a link layer perspective. Deployment of carrier aggregation in satellite systems with the combination of multiple carriers that have different characteristics requires effective scheduling schemes for reliable communications. To this end, a novel load balancing scheduling algorithm has been proposed to distribute data packets across the aggregated carriers based on channel capacities and to utilize spectrum efficiently. Moreover, in order to ensure that the received data packets are delivered without perturbing the original transmission order, a perceptive scheduling algorithm has been developed that takes into consideration channel properties along with the instantaneous available resources at the aggregated carriers. The proposed modifications have been carefully designed to make carrier aggregation transparent above the medium access control (MAC) layer. Additionally, the complexity analysis of the proposed algorithms has been conducted in terms of the computational loads. Simulation results are provided to validate our analysis, demonstrate the design tradeoffs, and to highlight the potentials of carrier aggregation applied to satellite communication systems. [less ▲]

Detailed reference viewed: 187 (22 UL)
Full Text
Peer Reviewed
See detailMulti-layer Space Information Networks: Access Design and Softwarization
Al-Hraishawi, Hayder UL; Minardi, Mario UL; Chougrani, Houcine UL et al

in IEEE Access (2021)

In this paper, we propose an approach for constructing a multi-layer multi-orbit space information network (SIN) to provide high-speed continuous broadband connectivity for space missions (nanosatellite ... [more ▼]

In this paper, we propose an approach for constructing a multi-layer multi-orbit space information network (SIN) to provide high-speed continuous broadband connectivity for space missions (nanosatellite terminals) from the emerging space-based Internet providers. This notion has been motivated by the rapid developments in satellite technologies in terms of satellite miniaturization and reusable rocket launch, as well as the increased number of nanosatellite constellations in lower orbits for space downstream applications, such as earth observation, remote sensing, and Internet of Things (IoT) data collection. Specifically, space-based Internet providers, such as Starlink, OneWeb, and SES O3b, can be utilized for broadband connectivity directly to/from the nanosatellites, which allows a larger degree of connectivity in space network topologies. Besides, this kind of establishment is more economically efficient and eliminates the need for an excessive number of ground stations while achieving real-time and reliable space communications. This objective necessitates developing suitable radio access schemes and efficient scalable space backhauling using inter-satellite links (ISLs) and inter-orbit links (IOLs). Particularly, service-oriented radio access methods in addition to software-defined networking (SDN)-based architecture employing optimal routing mechanisms over multiple ISLs and IOLs are the most essential enablers for this novel concept. Thus, developing this symbiotic interaction between versatile satellite nodes across different orbits will lead to a breakthrough in the way that future downstream space missions and satellite networks are designed and operated. [less ▲]

Detailed reference viewed: 123 (20 UL)
Full Text
Peer Reviewed
See detailTraffic Simulator for Multibeam Satellite Communication Systems
Al-Hraishawi, Hayder UL; Lagunas, Eva UL; Chatzinotas, Symeon UL

Scientific Conference (2020, October 20)

Assume that a multibeam satellite communication system is designed from scratch to serve a particular area with maximal resource utilization and to satisfactorily accommodate the expected traffic demand ... [more ▼]

Assume that a multibeam satellite communication system is designed from scratch to serve a particular area with maximal resource utilization and to satisfactorily accommodate the expected traffic demand. The main design challenge here is setting optimal system parameters such as number of serving beams, beam directions and sizes, and transmit power. This paper aims at developing a tool, multibeam satellite traffic simulator, that helps addressing these fundamental challenges, and more importantly, provides an understanding to the spatial-temporal traffic pattern of satellite networks in large-scale environments. Specifically, traffic demand distribution is investigated by processing credible datasets included three major input categories of information: (i) population distribution for broadband Fixed Satellite Services (FSS), (ii) aeronautical satellite communications, and (iii) vessel distribution for maritime services. This traffic simulator combines this three-dimensional information in addition to time, locations of terminals, and traffic demand. Moreover, realistic satellite beam patterns have been considered in this work, and thus, an algorithm has been proposed to delimit the coverage boundaries of each satellite beam, and then compute the heterogeneous traffic demand at the footprint of each beam. Furthermore, another algorithm has been developed to capture the inherent attributes of satellite channels and the effects of multibeam interference. Data-driven modeling for satellite traffic is crucial nowadays to design innovative communication systems, e.g. precoding and beam hopping, and to devise efficient resource management algorithms. [less ▲]

Detailed reference viewed: 281 (18 UL)
Full Text
Peer Reviewed
See detailCarrier Aggregation in Satellite Communications: Impact and Performance Study
Kibria, Mirza; Lagunas, Eva UL; Maturo, Nicola UL et al

in IEEE Open Journal of the Communications Society (2020)

Detailed reference viewed: 147 (19 UL)